K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2018

Đáp án A.

28 tháng 12 2019

Chọn B

· Bổ đề: Trong mặt phẳng cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm  A 1 ,   A 2 ,   . . . ,   A 10  và trên tia Oy lấy 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10   thỏa mãn  O A 1   =   A 1 A 2   =   . . . =   A 9 A 10   =   O B 1   =   B 1 B 2   =   . . . . =   B 9 B 10   =   1 (đvd).

Tìm số tam giác có 2 đỉnh nằm trong 10 điểm đỉnh nằm trong 10 điểm  B 1 ,   B 2 ,   . . . . ,   B 10  sao cho tam giác chọn được có đường tròn ngoại tiếp, tiếp xúc với một trong hai trục Ox hoặc Oy?

Giải: Gọi   là 3 đỉnh của tam giác thỏa yêu cầu bài toán với 

Ta có 

Do đường tròn luôn cắt Ox tại   phân biệt nên đường tròn chỉ có thể tiếp xúc với Oy tại  B p  ta có phương tích 

Do nên dễ thấy 

hay nói cách khác bộ ba (m,n,p)

Vậy có 4 tam giác thỏa mãn yêu cầu bổ đề.

· Bài toán: Không gian mẫu 

Gọi A là biến cố chọn được tam giác có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy. Theo bổ đề ta chọn được 4 tam giác có 2 đỉnh thuộc tia Ox, 1 đỉnh thuộc tia Oy; tương tự có 4 tam giác có 1 đỉnh thuộc tia Oy,  đỉnh thuộc tia . Suy ra, n(A) = 8

Xác suất biến cố A là 

18 tháng 4 2022

2

18 tháng 4 2022

Không biết làm thì đừng spam 

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

+) Xét tam giác ABC có

M, N lần lượt là trung điểm của AB, AC

\( \Rightarrow \) MN là đường trung bình của tam giác ABC

\( \Rightarrow \) MN // BC

Mà NP \( \bot \) MN nên NP \( \bot \) BC

Xét tam giác ADC có

N, P lần lượt là trung điểm của AC, CD

\( \Rightarrow \) PN là đường trung bình của tam giác ADC

\( \Rightarrow \) PN // AD

Mà NP \( \bot \) BC nên AD \( \bot \) BC

+) BC // MN mà \(MN \subset \left( {MNP} \right) \Rightarrow BC//\left( {MNP} \right)\)

PN // AD mà \(PN \subset \left( {MNP} \right) \Rightarrow AD//\left( {MNP} \right)\)

Vậy AD và BC chéo nhau.

Xét ΔABC có AM/AB=AN/AC

nên MN//BC

=>BC vuông góc NP

Xét ΔCAD có CN/CA=CP/CD

nên NP//AD

mà BC vuông góc NP

nên BC vuông góc AD

PN//AD

=>AD//(MNP)

BC//NP

=>BC//(MNP)

=>AD và BC chéo nhau

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}\left. \begin{array}{l} + )AC \bot BD\,\,\left( {hv\,\,ABCD} \right)\\SA \bot BD\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right)\\\left. \begin{array}{l} + )BD \bot SC\left( {BD \bot \left( {SAC} \right)} \right)\\BM \bot SC\\BD \cap BM = \left\{ B \right\}\end{array} \right\} \Rightarrow SC \bot \left( {MBD} \right)\end{array}\)

Gọi \(AC \cap BD = \left\{ O \right\}\)

\(\left. \begin{array}{l}SC \bot \left( {MBD} \right)\\OM \subset \left( {MBD} \right)\end{array} \right\} \Rightarrow SC \bot OM\)

Mà \(AH \bot SC\)

\( \Rightarrow AH//OM,OM \subset \left( {MBD} \right) \Rightarrow AH//\left( {MBD} \right)\)

20 tháng 11 2018

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 119 sgk Hình học 11 | Để học tốt Toán 11

a: Sửa đề; BC vuông góc SB

BC vuông góc AB

BC vuông góc SA

=>BC vuôg góc (SAB)

=>CB vuông góc SB

c: (SO;(SCD))=(SO;SK)=góc KSO(OK vuông góc DC tại K)

\(AO=\dfrac{AC}{2}=1.5a\)

\(SA=\sqrt{SC^2-AC^2}=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)

\(SO=\sqrt{SA^2+AO^2}=\dfrac{a\sqrt{73}}{2}\)

\(AD=BC=\sqrt{\left(3a\right)^2-a^2}=2a\sqrt{2}\)

Xét ΔACD có

O là trung điểm của AC

OK//AD

=>K là trung điểm của CD

=>DK=CK=a/2

\(AK=\sqrt{\left(2a\sqrt{2}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{33}}{2}\)

\(SK=\sqrt{SA^2+AK^2}=\sqrt{\left(4a\right)^2+\dfrac{33}{4}a^2}=\dfrac{a\sqrt{97}}{2}\)

OK=AD/2=a căn 2

\(SO=\dfrac{a\sqrt{73}}{2}\)

\(cosKSO=\dfrac{SK^2+SO^2-OK^2}{2\cdot SK\cdot SO}\simeq0.96\)

=>góc KSO=16 độ

Câu c bn ch c/m đc OK vuông góc vs mp (SCD) 

Thì sao xác định đc góc cần tìm là OSK