K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

bằng 25 bạn nhé mình làm rồi

17 tháng 12 2016

Bằng 25 bạn nhé 

chắc luôn ý

 Ta có: A^2= b(a-c)-c(a-b)=ab-bc-ac+bc=ab-ac=a(b-c)=-20.(-5)=100
=>A=10(vì A>0)

Tick nha 

20 tháng 7 2015

Tổng của a, b, c là:

(15 + 21 + 18) : 2 = 27

a là:

27 - 21 = 6

b là: 

27 - 18 = 9

c là:

27 - 15 = 12

ĐS:

20 tháng 7 2015

tổng của a,b,c là

( 15+21+18):2 = 27

a là : 27-21=6

b là : 27-18=9

c là : 27-15=12

9 tháng 10 2015

a) 13,33<14<14,44

Vay 2 x X =14

X=14:2=7

b)13,33<13,4;13,5;13,6;13,7;13,8;13,9;14,0;14,1;14;2;14,3<14,44

Vay X=6,7 =6,8 =6,9 = 7,1 la TM nha Lê Hoàng Lan

25 tháng 3 2018

BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)

Cộng theo vế 3 BĐT trên ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)

Dấu bằng = xảy ra khi a = b = c = 1

5 tháng 8 2020

Đặt  \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)

Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :

\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)

Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)

\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)

25 tháng 4 2020

\(25.\left(\frac{bc+ab+ac}{abc}\right)+351\ge88.\left(a^2+b^2+c^2\right)\)

\(25\left(\frac{bc+ab+ac}{abc}\right)+351=25.abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\right)+351.abc\ge88.\left(a^2+b^2+c^2\right)\)

25.( bc+ ac + ab )+ 351 . abc \(\ge88abc\left(a^2+b^2+c^2\right)\)

Đến đây bạn tự làm tiếp nha ! Mình cũng không chắc về bài này cho lắm

26 tháng 4 2020

jhfjhgfhjfgjhfgjhgjjjjjjjjjjjjjjjjjjjjjjjfgjg