K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0

12 tháng 2 2020

\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x^2+y^2+z^2-xy-yz-zx=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\x=y=z\end{cases}}\)

Trường hợp x=y=z thì không phải bàn,ns cái trường hợp x+y+z=0

\(\frac{1}{x^2+y^2-z^2}=\frac{1}{\left(x+y\right)^2-2xy-z^2}=\frac{1}{\left(-z\right)^2-z^2-2xy}=\frac{1}{-2xy}\)

Tương tự rồi cộng lại thì \(BT=0\) thì phải

12 tháng 2 2020

Condition\(\hept{\begin{cases}x\ne0\\y\ne0\\z\ne0\end{cases}}\)

Put \(P=\frac{1}{x^2+y^2-z^2}+\frac{1}{y^2+z^2-x^2}+\frac{1}{z^2+x^2-y^2}\)

\(=\frac{1}{x^2+\left(y-z\right)\left(y+z\right)}+\frac{1}{y^2+\left(z-x\right)\left(z+x\right)}+\frac{1}{z^2+\left(x-y\right)\left(x+y\right)}\left(4\right)\)

Because \(x^2+y^2+z^2=3xyz\)

\(\Leftrightarrow x^2+y^2+z^2-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=0\)ư\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2yz-2zx\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y+z=0\\\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\end{cases}}\)

The first case: If \(x+y+z=0\left(1\right)\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}\left(2\right)}\)

From \(\left(1\right)\Rightarrow\hept{\begin{cases}x-y=-2y-z\\y-z=-2z-x\\z-x=-2x-y\end{cases}\left(3\right)}\)

 \(\left(2\right)\)and \(\left(3\right)\)into \(\left(4\right)\)we have

\(P=\frac{1}{x^2-x\left(-2z-x\right)}+\frac{1}{y^2-y\left(-2x-y\right)}+\frac{1}{z^2-z\left(-2y-z\right)}\)

\(=\frac{1}{2x^2+2xz}+\frac{1}{2y^2+2xy}+\frac{1}{2z^2+2yz}\)

\(=\frac{1}{2x\left(x+z\right)}+\frac{1}{2y\left(x+y\right)}+\frac{1}{2z\left(z+y\right)}\)

\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)

\(\frac{1}{-2xy}+\frac{1}{-2yz}+\frac{1}{-2zx}\)

\(=\frac{z+x+y}{-2xyz}=0\)( Because x+y+z=0)

The second case:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\left(5\right)\)

We have \(\hept{\begin{cases}\left(x-y\right)^2\ge0;\forall x,y,z\\\left(y-z\right)^2\ge0;\forall x,y,z\\\left(z-x\right)^2\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0;\forall x,y,z\left(6\right)\)

From \(\left(5\right),\left(6\right)\)\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z}\)

Because \(x=y=z\Rightarrow x^2=y^2=z^2=xy=yz=zx\)

So \(P=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)

\(=\frac{z+x+y}{xyz}=0\)

So...

7 tháng 2 2021

Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)

Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)

\(\Rightarrow yza+zxb+xyc=0\)

\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

6 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của trieu dang - Toán lớp 8 - Học toán với OnlineMath

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{\left(yz+xz+xy\right)}{xyz}=0\)

\(\Rightarrow yz+zx+xy=0\)

Ta có : \(x^2+2yz=x^2+yz+yz\)

                              \(=x^2+yz-zx-xy\)

                              \(=x\left(x-z\right)-y\left(x-z\right)\)

                              \(=\left(x-y\right)\left(x-z\right)\)

Tương tự : \(y^2+2xz=y^2+xz+xz\)

                                    \(=y^2+xz-xy-yz\)

                                    \(=y\left(y-x\right)+z\left(x-y\right)\)

                                    \(=\left(x-y\right)\left(z-y\right)\)

                  \(z^2+2xy=\left(x-z\right)\left(y-z\right)\)

\(\Rightarrow M=\frac{yz}{\left(x-y\right)\left(x-z\right)}+\frac{xz}{\left(x-y\right)\left(z-y\right)}+\frac{xy}{\left(x-z\right)\left(y-z\right)}\)  \(M=\frac{yz\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{xz\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{xy\left(x-y\right)}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}\)

\(M=\frac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{yz\left(y-z\right)-xz\left(x-y+y-z\right)+xy\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(A=\frac{\left(yz-xz\right)\left(y-z\right)+\left(xy-xz\right)\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=\frac{\left(x-y\right)\left(x-z\right)\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}=1\)

29 tháng 12 2016

...

=>\(\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=1\)

=>\(\frac{x^2}{y+z}+\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{y^2}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}+\frac{z^2}{x+y}=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}+\frac{xy}{z+x}+\frac{yz}{z+x}+\frac{xz}{x+y}+\frac{yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy+xz}{y+z}+\frac{xy+yz}{z+x}+\frac{xz+yz}{x+y}\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=1\)

=>\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+1=1\)

=>\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)

29 tháng 12 2016

Dáp số =0

HD