K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2022

Đặt \(x^3=a^3;27y^3=b^3;8z^3=c^3\)

\(\Rightarrow a^3-b^3-c^3=3abc\)

\(\Rightarrow a^3-b^3-c^3-3abc=0\)

\(\Rightarrow a^3-\left(b+c\right)^3+3bc\left(b+c\right)-3abc=0\)

\(\Rightarrow\left(a-b-c\right)\left[a^2+a\left(b+c\right)+\left(b+c\right)^2\right]-3bc\left(a-b-c\right)=0\)

\(\Rightarrow\left(a-b-c\right)\left(a^2+ab+ac+b^2+2bc+c^2-3bc\right)=0\)

\(\Rightarrow\left(a-b-c\right)\left(a^2+b^2+c^2+ab-bc+ca\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-b-c=0\\a^2+b^2+c^2+ab-bc+ca=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a-b-c=0\\\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c+a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a-b-c=0\\a=-b=-c\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-3y-2z=0\\x=-3y=-2z\end{matrix}\right.\)

*\(x-3y-2z=0\) :

\(P=\dfrac{\left(x-3y\right)\left(3y+2z\right)\left(x-2z\right)}{6xyz}=\dfrac{2z.x.3y}{6xyz}=1\)

*\(x=-3y=-2z\) :

\(P=\dfrac{\left(x-3y\right)\left(3y+2z\right)\left(x-2z\right)}{6xyz}\dfrac{\left(x+x\right)\left(3y+3y\right)\left(-2z-2z\right)}{6xyz}=\dfrac{2x.6y.\left(-4\right)z}{6xyz}=-8\)

 

1 tháng 7 2022

Mk sửa lại biểu thức P :\(P=\dfrac{\left(x-3y\right)\left(3y+2z\right)\left(x-2z\right)}{6xyz}\)

Ta có : x3 - 27y3 - 8z3 = 18xyz 

<=> (x - 3y)3 + 9xy(x - 3y) - 8z3 = 18xyz

<=> [(x - 3y)3 - (2z)3] + 9xy(x - 3y - 2z) = 0

<=> (x - 3y - 2z)[(x - 3y)2 + (x - 3y).2z + 4z2] + 9xy(x - 3y - 2z) = 0

<=> (x - 3y - 2z)[(x - 3y)2 + (x - 3y).2z + 4z2 + 9zy] = 0

<=> \(\left(x-3y-2z\right)\left\{\left[\dfrac{1}{4}\left(x-3y\right)^2+\left(x-3y\right).2z+4z^2\right]+\dfrac{3}{4}\left(x-3y\right)^2+9xy\right\}=0\)

<=> \(\left(x-3y-2z\right)\left\{\left[\dfrac{1}{2}\left(x-3y\right)+2z\right]^2+\dfrac{3}{4}\left(x+3y\right)^2\right\}=0\)

<=> \(\left[{}\begin{matrix}x-3y-2z=0\\\left[\dfrac{1}{2}\left(x-3y\right)+2z\right]^2+\dfrac{3}{4}\left(x+3y\right)^2=0\end{matrix}\right.\)

THI1 x - 3y - 2z = 0

<=> x = 3y + 2z

Khi đó \(P=\dfrac{2z.x.3y}{6xyz}=1\)

TH2 \(\left[\dfrac{1}{2}\left(x-3y\right)+2z\right]^2+\dfrac{3}{4}\left(x+3y\right)^2=0\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}\left(x-3y\right)+2z=0\\x+3y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2z=3y\\x=-3y\end{matrix}\right.\Leftrightarrow x=-3y=-2z\)

Khi đó P = \(\dfrac{\left(-6y\right).\left(-2x\right).\left(-4z\right)}{xyz}=-48\)

 

11 tháng 1 2021

X3 + Y3 + Z3 = 3XYZ

<=> X3 + Y3 + Z3 - 3XYZ = 0

<=> ( X3 + Y3 ) + Z3 - 3XYZ = 0

<=> ( X + Y )3 - 3XY( X + Y ) + Z3 - 3XYZ = 0

<=> [ ( X + Y )3 + Z3 ] - 3XY( X + Y + Z ) = 0

<=> ( X + Y + Z )[ ( X + Y )2 - ( X + Y ).Z + Z2 - 3XY ] = 0

<=> ( X + Y + Z )( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> \(\orbr{\begin{cases}X+Y+Z=0\\X^2+Y^2+Z^2-XY-YZ-XZ=0\end{cases}}\)

+) X + Y + Z = 0 => \(\hept{\begin{cases}X+Y=-Z\\Y+Z=-X\\X+Z=-Y\end{cases}}\)

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(\frac{X+Y}{Y}\right)\left(\frac{Y+Z}{Z}\right)\left(\frac{X+Z}{X}\right)=\frac{-Z}{Y}\cdot\frac{-X}{Z}\cdot\frac{-Y}{X}=-1\)

+) X2 + Y2 + Z2 - XY - YZ - XZ = 0

<=> 2( X2 + Y2 + Z2 - XY - YZ - XZ ) = 0

<=> 2X2 + 2Y2 + 2Z2 - 2XY - 2YZ - 2XZ = 0

<=> ( X2 - 2XY + Y2 ) + ( Y2 - 2YZ + Z2 ) + ( X2 - 2XZ + Z2 ) = 0

<=> ( X - Y )2 + ( Y - Z )2 + ( X - Z )2 = 0 (1)

DỄ DÀNG CHỨNG MINH (1) ≥ 0 ∀ X,Y,Z

DẤU "=" XẢY RA <=> X = Y = Z

KHI ĐÓ : \(M=\left(1+\frac{X}{Y}\right)\left(1+\frac{Y}{Z}\right)\left(1+\frac{Z}{X}\right)=\left(1+\frac{Y}{Y}\right)\left(1+\frac{Z}{Z}\right)\left(1+\frac{X}{X}\right)=2\cdot2\cdot2=8\)

11 tháng 1 2021

Khi x + y + z = 0

=> x + y = -z

=> x + z = - y

=> y + z = - x

Khi đó M = \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=-1\)

29 tháng 1 2017

P.An hở

19 tháng 3 2017

Ta có: 

\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)

Thế vào A ta được:

\(A=\frac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=1\)  

19 tháng 3 2017

bằng 1 mk làm rùi

28 tháng 12 2015

5.\(C\text{ó}x^2-12=0\Rightarrow x^2=12\Rightarrow x=\sqrt{12}ho\text{ặc}x=-\sqrt{12}\)

Mà x>0\(\Rightarrow x=\sqrt{12}\)

6.Vì x-y=4\(\Rightarrow\left(x-y\right)^2=x^2-2xy+y^2=x^2-10+y^2=4^2=16\Rightarrow x^2+y^2=26\)

Có \(\left(x+y\right)^2=x^2+2xy+y^2=26+10=36=6^2=\left(-6\right)^2\)

Vì xy>0 và x>0 =>y>0=>x+y>0=>x+y=6

7. \(3x^2+7=\left(x+2\right)\left(3x+1\right)\)

\(3x^2+7=3x^2+7x+2\)

\(3x^2+7-3x^2-7x-2=0\)

-7x+5=0

-7x=-5

\(x=\frac{5}{7}\)

8.\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left(2x+4\right)^2=9\)

(2x+1-2x-4)(2x+1+2x+4)=9

-3(4x+5)=9

4x+5=-3

4x=-8

x=-2

Còn câu 9 và 10 để mình nghiên cứu đã

 

 

2 tháng 3 2017

biet x+y =2 tinh min 3x^2 + y^2

12 tháng 1 2017

tích cho tớ nha cậu, mơn nhìu ạk

12 tháng 1 2017

Ai biết cách làm thì nhanh tay giải giùm mình nhé!!!!!!!!!!!!

mk đang cần gấp....<3<3<3<3<3<3

=-2016 đúng ko?

20 tháng 1 2017

Đề chưa chuẩn: tuy nhiên đánh vào -2016 => đáp án đúng:

Vì bản chất như sau:

thỏa ĐK ban đầu x^3+y^3+z^3=3xzy

Từ HĐT=>

\(\orbr{\begin{cases}x+y+z=0\left(1\right)\\x^2+y^2+z^2-xy-yz-xz=0\left(2\right)\end{cases}}\)

=>(1)&(2) đều có cặp nghiệm x=y=z=0 khi đó P không xác định

do vậy đề thiếu điều kiện x,y,z không đồng thời =0:(*)

Nếu thêm đk (*) giải tiếp

(2) vô nghiệm 

do vậy khi đó chỉ có nghiệm duy nhất của (1) 

x+y=-z

x+z=-y

z+y=-x

Thay vào biểu thwucs  P=-2016