\(xyz=1\) và \(\frac{1}{x}+\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

24 tháng 1 2018

Cái bài này bạn làm đc chưa? Hướng dẫn mk ik. >.<

11 tháng 10 2018

Đề kêu chứng minh gì vậy bạn?

25 tháng 12 2016

Xét: \(x+y+z=xyz\Leftrightarrow\frac{x+y+z}{xyz}=1\)

\(\Leftrightarrow\frac{x}{xyz}+\frac{y}{xyz}+\frac{z}{xyz}=1\Leftrightarrow\frac{1}{yz}+\frac{1}{xz}+\frac{1}{xy}=1\)

Mặt khác:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)<=>\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\left(\sqrt{3}\right)^2\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xy}+\frac{2}{yz}+\frac{2}{xz}=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2.1=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2=3\)

<=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)

7 tháng 4 2017

ủng hộ mk nha mọi người

22 tháng 7 2018

Sorry mình mới học lớp 5

14 tháng 3 2020

mk cx vậy