Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
\(\overrightarrow{CA}=\left(3-x;0-y\right)\)
=>\(\overrightarrow{CA}=\left(3-x;-y\right)\)
\(\overrightarrow{CB}=\left(-3-x;0-y\right)\)
=>\(\overrightarrow{CB}=\left(-x-3;-y\right)\)
\(\overrightarrow{CA}+3\overrightarrow{CB}=\overrightarrow{0}\)
=>\(\overrightarrow{CA}=-3\overrightarrow{CB}\)
=>\(\left\{{}\begin{matrix}3-x=-3\left(-3-x\right)\\0-y=-3\left(0-y\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x+3\left(-3-x\right)=0\\-y+3\cdot\left(-y\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-x-9-3x=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)
=>C(-1,5;0)
b: \(\overrightarrow{DA}=\left(3-x;0-y\right)\)
=>\(\overrightarrow{DA}=\left(3-x;-y\right)\)
\(\overrightarrow{DB}=\left(-3-x;0-y\right)\)
=>\(\overrightarrow{DB}=\left(-3-x;-y\right)\)
\(\overrightarrow{DA}-3\overrightarrow{DB}=\overrightarrow{0}\)
=>\(\overrightarrow{DA}=3\overrightarrow{DB}\)
=>\(\left\{{}\begin{matrix}3-x=3\left(-3-x\right)\\-y=3\left(-y\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3-x+3\left(x+3\right)=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12+2x=0\\y=0\end{matrix}\right.\)
=>x=-6 và y=0
=>D(-6;0)
Lời giải:
BĐT cần chứng minh tương đương với:
$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq 1(*)$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{1}{bc(2a^2+bc)}+\frac{1}{ac(2b^2+ac)}+\frac{1}{ab(2c^2+ab)}\geq \frac{9}{bc(2a^2+bc)+ac(2b^2+ac)+ab(2c^2+ab)}=\frac{9}{(ab+bc+ac)^2}=\frac{9}{3^2}=1$
Do đó BĐT $(*)$ đúng. Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Đề bài yêu cầu : Chứng minh rằng cả ba số a,b,c đều là số dương.
Giải như sau :
Vì abc>0 nên trong ba số a,b,c phải có ít nhất một số dương. (Giả sử ngược lại cả 3 số đều âm => abc<0 => vô lí)
Không mất tính tổng quát, ta giả sử a>0 , mà abc>0 => bc>0
Nếu b<0 , c<0 => b+c<0
Từ a+b+c>0 => b+c>-a => \(\left(b+c\right)^2< -a\left(b+c\right)\)
=> \(b^2+2bc+c^2< -ab-ac\)
=> \(ab+bc+ca< -b^2-bc-c^2\)
=> \(ab+bc+ca< 0\) (vô lí vì trái với giả thiết)
Vậy phải có b>0 và c>0. Suy ra cả ba số a,b,c đều dương.