Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{x+y}{xy}.\frac{1}{z}\ge\frac{2\sqrt{xy}}{xy}.\frac{1}{z}=\frac{2}{z\sqrt{xy}}\ge\frac{2}{z\left(\frac{x+y}{2}\right)}=\frac{4}{z\left(x+y\right)}\)
\(=\frac{4}{z\left(1-z\right)}=\frac{4}{\frac{1}{4}-\left(z-\frac{1}{2}\right)^2}\ge16\)
Min M= 16 khi z=1/2 và x=y =1/4.
Bài này đăng nhiều trên diễn đàn và em cũng làm nhiều rồi. Nhưng thôi kệ, cứ nhai lại vậy:v
Chú ý BĐT: \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (đúng với x, y là các số thực dương)
Do đó \(VT\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{zx\left(z+x\right)+xyz}\)
\(=\frac{1}{x+y+z}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\frac{1}{xyz}=1\)
Đẳng thức xảy ra khi \(x=y=z=1\)
Còn bác nào thích trâu bò thì chơi kiểu này:D
\(BĐT\Leftrightarrow\frac{x^3+y^3}{x^3+y^3+1}+\frac{y^3+z^3}{y^3+z^3+1}+\frac{z^3+x^3}{z^3+x^3+1}\ge2\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{x^3+y^3}\right)^2}{2\left(x^3+y^3+z^3\right)+3}=\frac{2\left(x^3+y^3+z^3\right)+2\Sigma_{cyc}\sqrt{\left(x^3+y^3\right)\left(y^3+z^3\right)}}{2\left(x^3+y^3+z^3\right)+3}\)(*)
Ta sẽ chứng minh: \(\Sigma_{cyc}\sqrt{\left(x^3+y^3\right)\left(z^3+y^3\right)}\ge\left(x^3+y^3+z^3\right)+3\)(1)
Áp dụng BĐT Bunyakovski: \(VT\ge x^3+y^3+z^3+\sqrt{x^3y^3}+\sqrt{y^3z^3}+\sqrt{z^3x^3}\)
\(\ge x^3+y^3+z^3+3\sqrt[6]{\left(xyz\right)^6}=x^3+y^3+z^3+3\)
Vậy (1) đúng. Thay vào (*) ta có đpcm.
Is that true?
Ta có : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+zx=xyz\)
\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Bình phương vế trái :
\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)
\(=\left(x+y+z+xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)Bình phương vế phải :
\(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2=\left(xyz+x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Suy ra cần phải chứng minh : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)(*)
Thật vậy, theo bđt Bunhiacopxki ta có : \(\sqrt{x+yz}.\sqrt{y+zx}\ge\sqrt{xy}+z\sqrt{xy}\)
\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)
\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)
Cộng các bđt trên theo vế ta chứng minh được (*) đúng.
Vậy bđt ban đầu được chứng minh.
Ý tưởng khác
Cũng từ giả thiết suy ra \(xyz=xy+yz+xz\)
Suy ra \(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+xz}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)
Theo BĐT Cauchy-Schwarz ta có \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\) do đó:
\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{x}=\sqrt{x}+\sqrt{\frac{yz}{x}}\)
Tương tự cho 2 BĐT còn lại \(\sqrt{y+xz}\ge\sqrt{y}+\sqrt{\frac{xz}{y}};\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\)
Cộng theo vế 3 BĐT được \(VT\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)
\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow VT\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\) (Đpcm)
Với mọi x;y;z ta luôn có:
\(\left(x+y-1\right)^2+\left(z-\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+2xy-2x-2y+1+z^2-z+\dfrac{1}{4}\ge0\)
\(\Leftrightarrow x^2+y^2+z^2+\dfrac{5}{4}+2xy-2x-2y-z\ge0\)
\(\Leftrightarrow2+2xy-2x-2y\ge z\)
\(\Leftrightarrow2\left(1-x\right)\left(1-y\right)\ge z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=\dfrac{1}{2}\)
Áp dụng BĐT cô si với ba số không âm ta có :
\(\frac{1}{\left(x+1\right)^2}+\frac{x+1}{8}+\frac{x+1}{8}\ge3\sqrt[3]{\frac{1}{64}}=\frac{3}{4}\)
=> \(\frac{1}{\left(x+1\right)^2}\ge\frac{3}{4}-\frac{x+1}{4}\) (1)
Dấu '' = '' xảy ra khi x = 1
CM tương tự ra có " \(\frac{1}{\left(y+1\right)^2}\ge\frac{3}{4}-\frac{y+1}{4}\)(2) ; \(\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}-\frac{z+1}{4}\) (3)
Dấu ''= '' xảy ra khi y = 1 ; z = 1
Từ (1) (2) và (3) => \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{3}{4}\cdot3-\frac{x+y+z+3}{4}\)\(\ge\frac{9}{4}-\frac{3\sqrt[3]{xyz}+3}{4}=\frac{9}{4}-\frac{6}{4}=\frac{3}{4}\)
BĐT được chứng minh
Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)
Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
ta có bđt :
x+y>=xyz hay cần cm 1/xz+1/yz>=1
\(\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(x+y+z\right)^2}=1\) (đpcm)
dấu = khi x=y=2z=1