K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D 

NV
14 tháng 9 2021

\(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\c+a=-b\\b+c=-a\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}A=a.\left(-c\right).\left(-b\right)=abc\\B=b.\left(-a\right).\left(-c\right)=abc\\C=c.\left(-b\right).\left(-a\right)=abc\end{matrix}\right.\)

\(\Rightarrow A=B=C\)

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

6 tháng 8 2023

Đặt \(3a+b-c=x;3b+c-a=y;3c+a-b=z\)

\(\Rightarrow27\left(a+b+c\right)^3=\left[3\left(a+b+c\right)\right]^3=\left(x+y+z\right)^3\)

Biểu thức đã cho trở thành:

\(\left(x+y+z\right)^3=x^3+y^3+z^3+24\)

\(\Leftrightarrow\left(x+y+z\right)^3-x^3-y^3-z^3=24\)

\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y\right)^3+3xy\left(x+y\right)-z^3=24\)

\(\Leftrightarrow\left(x+y+z\right)^3-\left(x+y+z\right)^3+3xy\left(x+y\right)+3\left(x+y\right)z\left(x+y+z\right)=24\)

\(\Leftrightarrow3\left(x+y\right)\left(z^2+xy+yz+zx\right)=24\)

\(\Leftrightarrow3\left(x+y\right)\left[z\left(y+z\right)+x\left(y+z\right)\right]=24\)

\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=24\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=8\)

\(\Leftrightarrow\left(3a+b-c+3b+c-a\right)\left(3b+c-a+3c+a-b\right)\left(3a+b-c+3c+a-b\right)=8\)

\(\Leftrightarrow\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=8\)

\(\Leftrightarrow2\left(a+2b\right).2\left(b+2c\right).2\left(c+2a\right)=8\)

\(\Leftrightarrow8\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=8\)

\(\Leftrightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)