K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

E A B M D C

  GT 

 M nằm giữa A, B. △AMD đều; △MBC đều

 AD ∩ BC = { E }

   KL

 a, △ABE đều

 b, △AMC = △DMB

Bài giải:

1, Vì △AMD đều => AMD = DAM = MDA = 60o và AM = MD = AD

Vì △MBC đều => MBC = BMC = BCM = 60 và MC = MB = BC

Xét △ABE có: ABE + AEB + EAB = 180o (tổng 3 góc trong tam giác)

=> 60o + 60o + AEB = 180o 

=> AEB = 60o 

Xét △ABE có: ABE = AEB = EAB = 60o => △ABE đều

2, Ta có: DMB = DMC + CMB

CMA = DMC + DMA 

Mà CMB = DMA = 60o 

=> DMB = CMA

Xét △AMC và △DMB

Có: AM = DM (cmt)

    CMA = DMB (cmt)

      MC = MB (cmt)

=> △AMC = △DMB (c.g.c)

12 tháng 5 2019

GIÚP MÌNH VỚI

@camonnn <3

12 tháng 5 2019

DfGnqlD.png

b.

Trên tia đối của MA lấy điểm N sao cho MA=MN.

Kẻ \(DF\perp AM\left(F\in AM\right)\)

Tí nữa tớ hướng dẫn cho

1 tháng 11 2018

Giải 

Bạn cân hình cho vuông góc nha! Mình không cân được.

N A B M C E D

Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .

Do đó :

\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay

\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)

Tương tự ta cũng có :

\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)

Từ (1) và (2) suy ra :

\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)

Xét 2 tam giác ABC và EAD,chúng có : 

\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)

Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)

b) Do 2 tam giác ABC và AED = nhau ta có :

\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)

Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .

=> CM = AN

Hai tam giác AMC = AND có :

AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)

Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)