Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hoành độ giao điểm \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)
Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)
Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)
Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC
Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)
\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)
Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\)

1) Tìm được \(A\left(0:3\right);B\left(0:7\right)\)
\(\Rightarrow I\left(0;5\right)\)
2) Hoành độ giao điểm J của \(\left(d_1\right)\)và\(\left(d_2\right)\)là nghiệm của \(PT:x+3=3x+7\)
\(\Rightarrow x=-2\Rightarrow y_J=1\Rightarrow J\left(-2;1\right)\)
\(\Rightarrow OI^2=0^2+5^2=25\)
\(\Rightarrow OJ^2=2^2+1^2=5\)
\(\Rightarrow IJ^2=2^2+4^2=20\)
\(\Rightarrow OJ^2+IJ^2=OI^2\Rightarrow\Delta OIJ\)LÀ TAM GIÁC VUÔNG TẠI J
\(\Rightarrow S_{\Delta OIJ}=\frac{1}{2}OI.OJ=\frac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(đvdt\right)\)

2.)\(x^3-10x+1=y^3+6y^2\)(1)
Đặt\(x=y+b\)với \(b\inℤ\).Ta có:
(1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)
\(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)
\(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)
\(=-3b^4+24b^3-60b^2+252b+76\)
\(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)
Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)
Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)
Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:
Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)
Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên
\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)
\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)
Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)
P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<
_Hoc Tốt_