\(A\left(-6;4\right),B\left(-3;1\right),C\left(2;-9\right)\)

a, Viết p...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2020

Mọi người giúp mình nha.

11 tháng 7 2017

Hoành độ giao điểm  \(d_1;d_2\)là nghiệm của phương trình \(2x-3=x-2\Rightarrow x=1\Rightarrow y=-1\Rightarrow A\left(1;-1\right)\)

Hoành độ giao điểm \(d_2;d_3\)là nghiệm của phương trình \(x-2=4x-2\Rightarrow x=0\Rightarrow y=-2\Rightarrow B\left(0;-2\right)\)

Hoành độ giao điểm \(d_1;d_3\)là nghiệm của phương trình \(2x-3=4x-2\Rightarrow x=-\frac{1}{2}\Rightarrow y=-4\Rightarrow C\left(-\frac{1}{2};-4\right)\)

Gọi \(G\left(\frac{x_A+x_B+x_C}{3};\frac{y_A+y_B+y_C}{3}\right)\)là trọng tâm tam giác ABC

Khi đó \(\frac{x_A+x_B+x_C}{3}=\frac{1+0-\frac{1}{2}}{3}=\frac{1}{6}\)

\(\frac{y_A+y_B+y_C}{3}=\frac{-1-2-4}{3}=-\frac{7}{3}\)

Vậy \(G\left(\frac{1}{6};-\frac{7}{3}\right)\) 

  

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất

12 tháng 10 2017

1) Tìm được \(A\left(0:3\right);B\left(0:7\right)\)

\(\Rightarrow I\left(0;5\right)\)

2) Hoành độ giao điểm J của \(\left(d_1\right)\)\(\left(d_2\right)\)là nghiệm của \(PT:x+3=3x+7\)

\(\Rightarrow x=-2\Rightarrow y_J=1\Rightarrow J\left(-2;1\right)\)

\(\Rightarrow OI^2=0^2+5^2=25\)

\(\Rightarrow OJ^2=2^2+1^2=5\)

\(\Rightarrow IJ^2=2^2+4^2=20\)

\(\Rightarrow OJ^2+IJ^2=OI^2\Rightarrow\Delta OIJ\)LÀ TAM GIÁC VUÔNG TẠI J

\(\Rightarrow S_{\Delta OIJ}=\frac{1}{2}OI.OJ=\frac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(đvdt\right)\)

20 tháng 4 2020

2.)\(x^3-10x+1=y^3+6y^2\)(1)

    Đặt\(x=y+b\)với \(b\inℤ\).Ta có:

                                                  (1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)

                                                      \(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)

                                                \(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)

                                                    \(=-3b^4+24b^3-60b^2+252b+76\)

                                                    \(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)

Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)

Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)

Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:

          Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)

          Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên

20 tháng 4 2020

\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)

\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)

\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)

Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)

P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<

_Hoc Tốt_