Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+y=6\Leftrightarrow x=\frac{6-y}{2}\)
a) \(A=2x^2+y^2=2\left(\frac{6-y}{2}\right)^2+y^2=\frac{2\left(6-y\right)^2}{4}+y^2\)
\(=\frac{2\left(36-12y+y^2\right)}{4}+y^2\)
\(=\frac{36-12y+y^2}{2}+\frac{2y^2}{2}=\frac{3y^2-12y+36}{2}\)
\(=\frac{3\left(y-2\right)^2+24}{2}\ge\frac{24}{2}=12\)(dấu "=" xảy ra khi y =2)
Vậy Min A = 12 khi y = 2
b) \(6=2x+y\ge2\sqrt{2xy}=2\sqrt{2B}\)
Suy ra \(8B\le36\Leftrightarrow B\le\frac{9}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}2x=y\\2x+y=6\end{cases}}\Leftrightarrow2x=y=3\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Vậy Max \(B=\frac{9}{2}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
Ta có
x+y=1 => x=1-y
thay vào phương trình
\(\Rightarrow M=5.\left(1-y\right)^2+y^2\)
\(\Rightarrow M=5.\left(1-2y+y^2\right)+y^2\)
\(\Rightarrow M=5-10y+5y^2+y^2\)
\(\Rightarrow M=6y^2-10y+5\)
\(\Rightarrow M=6\left(y^2-\frac{5}{3}y+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left(y^2-2.\frac{5}{6}y+\frac{25}{36}-\frac{25}{36}+\frac{5}{6}\right)\)
\(\Rightarrow M=6\left[\left(y-\frac{5}{6}\right)^2+\frac{5}{36}\right]\)
\(\Rightarrow M=6\left(y-\frac{5}{6}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)
Vậy \(M_{min}=\frac{5}{6}\Leftrightarrow\hept{\begin{cases}x+y=1\\y-\frac{5}{6}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\\y=\frac{5}{6}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=1-\frac{5}{6}=\frac{1}{6}\\y=\frac{5}{6}\end{cases}}\)
T I C K chọn mình nha bạn cảm ơn chúc bạn học tốt
\(\)
http://olm.vn/hoi-dap/question/623627.html vào đây là thấy câu trả lời của mình và T I C K cho mình nha cảm ơn
P= (x2+2xy+y2)+(x+y)+(x2+4x+4)+21/4
P=(x+y)2+2(x+y)x1/2+1/4+(x+2)2+5
p=(X+Y+1/2)2+(x+2)2+5 >=0
Dấu bằng xảy ra khi:
x+y+1/2=0
x+2=0
Bạn tự giải nốt nhé
bạn ơi giải thích cho mình tại sao lại lấy được P=(x+y+1/2)^2 + (x+2)^2+5 đc ko
\(Q=-5x^2+y^2+2=\left(y^2-4x^2\right)-x^2+2=\left(y-2x\right)\left(2x+y\right)-x^2+2=y-2x-x^2+2=\left(1-2x\right)-2x-x^2+2=-x^2-4x+3=-\left(x+2\right)^2+7\le7\)
\(maxQ=7\Leftrightarrow x=-2\)
\(P=5x^2+y^2-2x(y+8)+2023\\=5x^2+y^2-2xy-16x+2023\\=(x^2-2xy+y^2)+(4x^2-16x+16)+2007\\=(x-y)^2+4(x^2-4x+4)+2007\\=(x-y)^2+4(x-2)^2+2007\)
Ta thấy: \(\left(x-y\right)^2\ge0\forall x;y\)
\(4\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow (x-y)^2+4(x-2)^2\ge0\forall x;y\\\Rightarrow P=(x-y)^2+4(x-2)^2+2007\ge2007\forall x;y\)
Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=2\end{matrix}\right.\Leftrightarrow x=y=2\)
Vậy \(Min_P=2007\) khi \(x=y=2\).
\(\text{#}Toru\)
\(P=5x^2+y^2-2x\left(y+8\right)+2023\)
\(=x^2-2xy+y^2+4x^2-16x+2023\)
\(=\left(x-y\right)^2+4x^2-16x+16+2007\)
\(=\left(x-y\right)^2+\left(2x-4\right)^2+2007>=2007\)
Dấu = xảy ra khi x-y=0 và 2x-4=0
=>x=y=2
mọi người ơi giúp mk vs ạ
mk gấp lắm rồi ạ