Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
E = 2x^2 - 5x -2 = 2( x^2 -5/2x -1) = 2(x^2 - 2.x.5/4 +25/16 - 41/16) = 2(x - 5/4 )^2 + 41/8
Vậy GTNN của biểu thức là 41/8 tại x = 5/4
F = x^2 + 5y^2 + 2xy -y +3 = (x^2 + 2xy +y^2) + (4y^2 - 2.2y.1/4 + 1/16) +47/16
(x + y)^2 + (2y - 1/4)^2 + 47/16
Vậy GTNN của BT là 47/16 tại x = y = 1/8
\(A=2x^2+y^2+2xy-6x-2y+10\)
\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)
\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)
Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
\(A=2x^2+2xy+y^2-2x+2y+2\)
\(=x^2-4x+4+x^2+y^2+1+2x+2y+2xy-3\)
\(=\left(x-2\right)^2+\left(x+y+1\right)^2-3\ge-3\)
Dấu \(=\)khi \(\hept{\begin{cases}x-2=0\\x+y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\).
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
\(C=2x^2+y^2-4x+2xy+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y\right)^2+\left(x-2\right)^2-3\ge-3\)
-Dấu bằng xảy ra khi và chỉ khi \(x=2\) và \(y=-2\).
P= (x2+2xy+y2)+(x+y)+(x2+4x+4)+21/4
P=(x+y)2+2(x+y)x1/2+1/4+(x+2)2+5
p=(X+Y+1/2)2+(x+2)2+5 >=0
Dấu bằng xảy ra khi:
x+y+1/2=0
x+2=0
Bạn tự giải nốt nhé
bạn ơi giải thích cho mình tại sao lại lấy được P=(x+y+1/2)^2 + (x+2)^2+5 đc ko