Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Bài 2:
\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow4^x=8.2^{x+y}\Leftrightarrow\left(2^2\right)^x=2^3.2^{x+y}\Leftrightarrow2^{2x}=2^{x+y+3}\)<=>2x=x+y+3<=>x=y+3
\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow9^{x+y}=243.3^{5y}\Leftrightarrow\left(3^2\right)^{x+y}=3^5.3^{5y}\Leftrightarrow3^{2x+2y}=3^{5y+5}\)<=>2x+2y=5y+5
<=>2x=3y+5 mà x=y+3 => 2(y+3)=3y+5 <=> 2y+6=3y+5 <=> 6-5=3y-2y <=> y=1 <=> x=1+3=4
Vậy xy=4.1=4
Giải:
Có: \(2^x=8^{y+1}\) và \(9^y=3^{x-9}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2^x=2^{3y+3}\\3^{2y}=3^{x-9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y+3\\2y=x-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3y+3\\y=\dfrac{x-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow x+y=3y+3+\dfrac{x-9}{2}\)
Chúc bạn học tốt!
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
1,
\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)
2,
\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)
3, Làm tương tự câu 2
5,
\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)
6,
\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)
7,
\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)
9,
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
a) \(\left(1-\frac{2}{5}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{99}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{97}{99}\)
\(=\frac{3}{99}=\frac{1}{33}\)
b) Ta có: 2x = 8y+1 = (23)y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9
=> (32)y = 3x-9
=> 32y = 3x-9
=> 2y = x - 9 (2)
Từ (1) và (2) => x + 2y = 3y + 3 + x - 9
=> x + y = 2y + x - 6
A=\(\left(-\frac{5}{4}\times\frac{2}{5}\right)\times\left(x^3x^2x^3\right)\times\left(yy^4\right)\)
A=\(-\frac{1}{2}x^8y^5\)
B=\(\left(-\frac{3}{4}\times-\frac{8}{9}\right)\times\left(x^5xx^2\right)\times\left(y^4y^2y^5\right)\)
B=\(\frac{2}{3}x^8y^{11}\)
2x = 8y+1 <=> 2x = ( 23 )y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9 <=> 32.y = 3x-9
=> 2y = x - 9 => x = 2y + 9 (2)
Từ (1); (2) => 3y + 3 = 2y + 9
<=> 3y - 2y = 9 - 3=> y = 6
=> 2.6 = x - 9 <=> 12 = x - 9 => x = 21
=> x + y = 21 + 6 = 27