K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

Để phương trình có 2 nghiệm cùng dấu : \(\hept{\begin{cases}\Delta>0\\P>0\end{cases}}\)

Tương đương : \(\hept{\begin{cases}\left(-6\right)^2-4\left(2m+1\right)>0\\2m+1>0\end{cases}}\)

\(< =>\hept{\begin{cases}9>2m+1\\2m>-1\end{cases}}\)\(< =>\hept{\begin{cases}4>m\\m>-\frac{1}{2}\end{cases}}\)

\(< =>-\frac{1}{2}< m< 4\)

Vậy để phương trình có 2 nghiệm cùng dấu thì \(-\frac{1}{2}< m< 4\)

Ta có : \(x^2-6x+2m+1=0\left(a=1;b=-6;c=2m+1\right)\)

Để phương trình trái dấu : \(\Leftrightarrow ac< 0\)tương đương với \(2m+1>0\)

\(\Leftrightarrow2m+1>0\Leftrightarrow2m>-1\Leftrightarrow m< -\frac{1}{2}\)

19 tháng 3 2023

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

4 tháng 7 2020

Phương trình có 2 nghiệm trái dấu khi : \(ac< 0\)

\(< =>2m+1< 0\)

\(< =>2m< -1\)

\(< =>m< -\frac{1}{2}\)

Vậy để phương trình có 2 nghiệm trái dấu thì \(m< -\frac{1}{2}\)

5 tháng 3 2022

\(\Delta=\left(4m-1\right)^2-4\left(2m+3\right)=16m^2-8m+4-8m-12\)

\(=16m^2-16m-8\)

Để pt có 2 nghiệm pb \(2m^2-2m-1>0\)

 

bạn ơi , mik tưởng 1 nhân vs 1 vẫn bằng 1 chứ sao lại bằng 4 ạ?

 

 

Δ=(-3)^2-4m^2=9-4m^2

Để phương trình có hai nghiệm thì 9-4m^2>=0

=>-2/3<=m<=2/3

x1^2-3x2+x1x2-m^2-2m-1>6-m^2

=>x1^2-x2(x1+x2)+x1x2>6-m^2+m^2+2m+1=2m+7

=>x1^2-x2^2>2m+7

=>(x1+x2)(x1-x2)>2m+7

=>(x1-x2)*3>2m+7

=>x1-x2>2/3m+7/3

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2-4m^2=9-4m^2\)

=>\(x1-x2=\left|9-4m^2\right|\)

=>|9-4m^2|>2/3m+7/3

=>|4m^2-9|>2/3m+7/3

=>4m^2-9<-2/3m-7/3 hoặc 4m^2-9>2/3m+7/3

=>4m^2+2/3m-20/3<0 hoặc 4m^2-2/3m-34/3>0

=>\(\dfrac{-1-\sqrt{241}}{12}< m< \dfrac{-1+\sqrt{241}}{12}\) hoặc \(\left[{}\begin{matrix}m< \dfrac{1-\sqrt{409}}{12}\\m>\dfrac{1+\sqrt{409}}{12}\end{matrix}\right.\)

=>-2/3<=m<=2/3

\(\text{Δ}=\left(2m+2\right)^2-4\left(m+3\right)\)

\(=4m^2+8m+4-4m-12\)

\(=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để phương trình có hai nghiệm phân biệt thì (m+2)(m-1)>0

=>m>1 hoặc m<-2

Theo đề, ta có: 2(m+1)>2

=>m+1>1

hay m>0

=>m>1

12 tháng 3 2023

\(-x^2+\left(m+2\right)x+2m=0\)

\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)

Để phương trình có 2 nghiệm phân biệt

<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)

Vì phương trình có 2 nghiệm phân biệt

Áp dụng hệ thức vi ét

\(\Rightarrow x_1+x_2=m+2\)

=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)

\(\Rightarrow m=-3x_2-2\)

Bạn xem lại đề chứ k tìm được m luôn á

12 tháng 3 2023

Để mai mình hỏi thầy.Chắc thầy giáo mình giao nhầm đề :vv

2 tháng 12 2021

Để phương trình trên có 2 nghiệm trái dấu.

<=> ac < 0.

<=> 2. (2m - 1) < 0.

<=> 2m - 1 < 0.

<=> 2m < 1.

<=> m < \(\dfrac{1}{2}\).