K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

AH
Akai Haruma
Giáo viên
10 tháng 2 2024

Lời giải:
Ta có:

$a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+ab+b^2)-2ab]$

Áp dụng BĐT AM-GM:

$a^2+ab+b^2=(a^2+b^2)+ab\geq 2ab+ab=3ab$

$\Rightarrow 2ab\leq \frac{2(a^2+ab+b^2)}{3}$

$\Rightarrow a^2-ab+b^2=a^2+b^2+ab-2ab\geq a^2+b^2+ab- \frac{2}{3}(a^2+ab+b^2)=\frac{1}{3}(a^2+ab+b^2)$

$\Rightarrow a^3+b^3=(a+b)(a^2-ab+b^2)\geq \frac{1}{3}(a+b)(a^2+ab+b^2)$

$\Rightarrow \frac{a^3+b^3}{a^2+ab+b^2}\geq \frac{1}{3}(a+b)$

Hoàn toàn tương tự với các phân thức khác và cộng theo vế thu được:

$P\geq \frac{1}{3}(a+b)+\frac{1}{3}(b+c)+\frac{1}{3}(c+a)=\frac{2}{3}(a+b+c)$

$\geq \frac{2}{3}.3\sqrt[3]{abc}=2$

Vậy $P_{\min}=2$. Giá trị này đạt tại $a=b=c=1$

AH
Akai Haruma
Giáo viên
13 tháng 10 2021

Bài 1:

$a^2+b^2+c^2=ab+bc+ac$
$\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ac=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$

Vì $(a-b)^2, (b-c)^2, (c-a)^2\geq 0$ với mọi $a,b,c$

Do đó để tổng của chúng bằng $0$ thì $a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Mà $a+b+c=3$ nên $a=b=c=1$

$\Rightarrow Q=(1+1)^2+(1+2)^3+(1+3)^3=95$

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

21 tháng 4 2019

1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)

Tương tự :  \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\)\(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)

\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1

21 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)

NV
21 tháng 5 2020

\(9=3a^2+2b^2+2c^2+2bc\)

\(\Leftrightarrow9=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)

\(\Leftrightarrow9\ge\left(a+b+c\right)^2+2a^2+\frac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)

\(\Leftrightarrow9\ge\left(a+b+c\right)^2+\frac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)

\(\Rightarrow a+b+c\le3\)

Ta có:

\(P=a+b+c+\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\ge a+b+c+\frac{18}{a+b+c}\)

\(P\ge a+b+c+\frac{9}{a+b+c}+\frac{9}{a+b+c}\)

\(P\ge2\sqrt{\frac{9\left(a+b+c\right)}{a+b+c}}+\frac{9}{3}=9\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Thanks bn

1 tháng 8 2020

Ta có BĐT sau:

\(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Leftrightarrow a^3+b^3+c^3+ab^2+bc^2+ca^2\ge2a^2b+2b^2c+2c^2a\)

Sử dụng AM - GM ta dễ có được:

\(a^3+ab^2\ge2\sqrt{a^4b^2}=2a^2b\)

\(b^3+bc^2\ge2\sqrt{b^4c^2}=2b^2c\)

\(c^3+c^2a\ge2\sqrt{c^4a^2}=2c^2a\)

\(\Rightarrow BĐT\) đầu tiên đúng

Khi đó ta có:

\(a^2+b^2+c^2\ge a^2b+b^2c+c^2a\Rightarrow P\ge a^2b+b^2c+c^2a+\frac{ab+bc+ca}{a^2b+b^2c+c^2a}\)

Một vài đánh giá cơ bản rồi đặt ẩn phụ rồi xét đạo hàm phát ra nhé

1 tháng 8 2020

@huybip5cc, bn giải kĩ ra giúp mk nhé, mk dốt lắm, nhìn vậy ko hiểu đâu ạ, mơn nh!

14 tháng 9 2017

bai dai dong qua

14 tháng 9 2017

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau