Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a-b=\frac{2}{3}\left(a+b\right)\)
\(2a-b=\frac{2}{3}a+\frac{2}{3}b\)
\(2a-\frac{2}{3}a-b-\frac{2}{3}b=0\)
\(\frac{4}{3}a-\frac{5}{3}b=0\)
\(\Rightarrow4a-5b=0\)
\(\Rightarrow a=\frac{5}{4}b\) Thay vào A
\(A=\frac{a^4+5^4}{b^4+4^4}=\frac{\left(\frac{5}{4}b\right)^4+5^4}{b^4+4^4}=\left(\frac{5^4\cdot b^4}{4^4}+5^4\right)\div\left(b^4+\text{4^4}\right)\)
\(=\frac{5^4\cdot b^{\text{4}}+5^4\cdot\text{4^4}}{4^4.\left(b^4+\text{4^4}\right)}=\frac{5^4\left(b^4+4^4\right)}{4^4\left(b^4+4^4\right)}=\frac{5^4}{4^4}\)
Mấy bạn xem xong cho mình kết quả đúng hay sai nha <3 ^_^
a, a/b=c/d
<=>a/c=b/d
<=>2a/2c=3b/3d=2a+3b/2c+3d=2a-3b/2c-3d
<=>2a+3b/2a-3b=2c+3d/2c-3d(đpcm)
\(\frac{7}{2a+2}=\frac{3}{2b-4}=\frac{5}{c+4}\Rightarrow\frac{7}{2a+2}=\frac{3}{2b-4}=\frac{10}{2c+8}=\frac{20}{2\left(a+b+c\right)+6}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{7}{2a+2}=\frac{3}{2b-4}=\frac{10}{2c+8}=\frac{1}{2}\)(Do a+b+c=17) \(\Rightarrow\hept{\begin{cases}a=6\\b=5\\c=6\end{cases}}\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
\(2a-b=\frac{2}{3}\left(a+b\right)\Rightarrow4a=5b\Rightarrow a=\frac{5}{4}b\)
\(A=\frac{\left(\frac{5}{4}b\right)^4+5^4}{b^4+4^4}=\frac{5^4\left(b^4+4^4\right)}{4^4\left(b^4+4^4\right)}=\frac{5^4}{4^4}\)
làm tắt quá bn ạ