Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này ta chỉ cần chứng minh có 4 số khác nhau trong 2002 số là được
Giả sử có 5 số khác nhau thì có 5 số a_1<a_2<a_3<a_4<a_5
Theo đề bài ta có
Xét 4 số a1;a2;a3;a4
a1.a4=a2.a3(ko thể có a1.a2=a3.a4 hay a1.a3=a2.a4) (1)
Xét 4 số a1;a2;a3;a5
a1.a5=a2.a3 (2)
Từ (1) và (2) suy ra a4=a5(không thỏa mãn)
Suy ra chỉ có 4 số khác nhau trong đó
Từ có 4 số khác nhau thì việc suy ra có 501 số bằng nhau quá dễ dàng
****
Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử
\(a_1< a_2< a_3< a_4< a_5\)(1)
Theo đầu bài \(a_1a_2=a_3a_4\)(2)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).
Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.
Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.
Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.
Ta chứng minh trong 2013 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\) là 5 số khác nhau bất kì. Không mất tính tổng quát ta giả sử :
\(a_1< a_2< a_3< a_4< a_5\left(1\right)\)
Theo bài ra ta có : \(a_1a_2=a_3a_4\left(2\right)\)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\) hoặc \(a_1a_3=a_2a_4\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\) thì \(a_1a_5=a_2a_3\left(3\right)\)
Từ (2) và (3) suy ra \(a_4=a_5\).Mâu thuẫn.
Vậy trong 2013 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà \(2013=4.503+1\)
Do đó trong 2013 số tự nhiên dương đã cho luôn tìm được ít nhất \(503+1=504\) số bằng nhau.