Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\in\left(0;1\right)\) thì luôn có \(x^{\frac{1}{2}}< x^{\frac{1}{3}}\Leftrightarrow\sqrt{x}< \sqrt[3]{x}\)
Hay \(\sqrt{abc}< \sqrt[3]{abc}\). Áp dụng BĐT AM-GM ta có:
\(\sqrt{abc}< \sqrt[3]{abc}\le\frac{a+b+c}{3}\)
\(\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}< \sqrt[3]{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
\(\le\frac{\left(1-a\right)+\left(1-b\right)+\left(1-c\right)}{3}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT< \frac{a+b+c+1-a+1-b+1-c}{3}=1\)
Ta có tính chất: \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\left(x,y>0\right)\)
Thật vậy, với x, y > 0, ta có: \(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}>x+y\)
\(\Rightarrow\sqrt{x}+\sqrt{y}>\sqrt{x+y}\)
Áp dụng BĐT Cauchy-Schwarz và sử dụng tính chất trên, ta được: \(\left(\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\right)^2\)\(=\left(\sqrt{a}.\sqrt{bc}+\sqrt{1-a}.\sqrt{\left(1-b\right)\left(1-c\right)}\right)^2\)\(\le\left[a+\left(1-a\right)\right]\left[bc+\left(1-b\right)\left(1-c\right)\right]=bc+\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\le\sqrt{bc+\left(1-b\right)\left(1-c\right)}\)\(< \sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\)(1)
Mặt khác: \(\left(\sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\right)^2\le\left[b+\left(1-b\right)\right]\left[c+\left(1-c\right)\right]\)\(=1\)
\(\Rightarrow\sqrt{bc}+\sqrt{\left(1-b\right)\left(1-c\right)}\le1\)(2)
Từ (1) và (2) suy ra\(\sqrt{abc}+\sqrt{\left(1-a\right)\left(1-b\right)\left(1-c\right)}< 1\left(q.e.d\right)\)