K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

Ta có: \(\hept{\begin{cases}x^3-3xy^2=10\\y^3-3x^2y=30\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x^3-3xy^2\right)^2=100\\\left(y^3-3x^2y\right)^2=900\end{cases}}\)

\(\Rightarrow\left(x^3-3xy^2\right)^2+\left(y^3-3x^2y\right)^2=1000\)

\(\Leftrightarrow x^6-6x^4y^2+9x^2y^4+y^6-6x^2y^4+9x^4y^2=1000\)

\(\Leftrightarrow x^6+3x^4y^2+3x^2y^4+y^6=1000\)

\(\Leftrightarrow\left(x^2+y^2\right)^3=1000\)

\(\Rightarrow x^2+y^2=10\)

27 tháng 1 2021

Có: \(x^3-3xy^2=10\)

=> \(x^6+9x^2y^4-6x^4y^2=100\left(1\right)\)

Có: \(y^3-3yx^2=30\)

=> \(y^6-6y^4x^2+9x^4y^2=900\left(2\right)\)

Lấy (1) + (2) ta được:

=> \(x^6+y^6+3x^2y^4+3x^4y^2=1000\)

=> \(\left(x^2+y^2\right)^3=1000\)

=> \(x^2+y^2=10\)

=> \(p=10.\)

23 tháng 6 2017

a) Ta có: ab = 132 = 12.11 ( thỏa mãn điều kiện a+b = 23)

 => a2 + b2 = 122 + 112 = 144 + 121 = 265

Ta có \(\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow xy=\frac{4-10}{2}=-3\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8-6xy=8-6.\left(-3\right)=26\)

Học tốt!!!!!!

9 tháng 3 2020

Ta có: x + y = 2

<=> (x + y)2 = 22

<=> x2 + y2 + 2xy = 4

<=> 10 + 2xy = 4

<=> 2xy = -6

<=> xy = -3

Khi đó: M = x3 + y3 = (x  + y)(x2 - xy + y2) = 2(10 + 3) = 2.13 = 26

9 tháng 12 2018

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

21 tháng 2 2021

x + y = 2

=> ( x + y )2 = 4

<=> x2 + 2xy + y2 = 4

<=> 2xy + 10 = 4

<=> 2xy = -6

<=> xy = -3

Ta có : M = x3 + y3 = ( x + y )( x2 - xy + y2 ) = 2( 10 + 3 ) = 26

Ta có : \(x+y=2\)

\(\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow x^2+y^2+2xy=4\)

Mà \(x^2+y^2=10\)

\(\Rightarrow10+2xy=4\)

\(\Rightarrow2xy=-6\)

\(\Rightarrow xy=-3\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2\left(10+3\right)=2.13=26\)

Vậy \(x^3+y^3=26\)

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi

3 tháng 2 2021

Ta có x2 - 3xy + 2y2 = 0

<=> x2 - xy - 2xy + 2y2 = 0

<=> x(x - y) - 2y(x - y) = 0

<=> (x - y)(x - 2y) = 0

<=> \(\orbr{\begin{cases}x-y=0\\x-2y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases}}}\)

*) Khi x = y

Vì x > y > 0 => x \(\ne y\)(loại)

* Khi x = 2y

=> x - y = 2y - y

=> y > 0 (Vì x - y > 0) (tm)

Với x = 2y ta có A = \(\frac{6x+16y}{5x-3y}=\frac{6.2y+16.y}{5.2y-3y}=\frac{28y}{7y}=4\)

3 tháng 2 2021

Ta có : x2  +2y2 -3xy=0

<=> x2 - 2xy + y2 + y2 -xy =0

<=> (x - y)2 + y(y - x)         =0

<=> (y - x)2 + y(y - x)         =0

<=> (y - x)(y - x + y)           =0

<=> y=x (vô lí ) hoặc x= 2y (thỏa mãn)

Thay x=2y vào A ta đc

A=\(\frac{12y+16y}{10y-3y}=\frac{28y}{7y}\)

A= 4

10 tháng 2 2019

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

17 tháng 8 2017

a) Ta có hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Vậy nên \(a^3+b^3+c^3+6=0.\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a^3+b^3+c^3=-6.\)

b) \(x^3+y^3+3xy=x^3+3xy\left(x+y\right)+y^3=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1.\)

c) \(x^3-y^3-3xy=x^3-3xy\left(x-y\right)-y^3=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1.\)

26 tháng 11 2018

\(x^2+2y^2-3xy=0\)

\(\Rightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\)

x = 2y thì \(A=\frac{2018.2y.y}{\left(2y\right)^2+2y^2}=\frac{4036y^2}{6y^2}=\frac{2018}{3}\)

x = y thì \(A=\frac{2018.y.y}{y^2+y^2}=\frac{2018y^2}{2y^2}=1009\)

Vậy \(\orbr{\begin{cases}A=\frac{2018}{3}\\A=1009\end{cases}}\)