K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

Ta có: \(\left(x+y\right)^2=x^2+2xy+y^2\) \(\Rightarrow5^2=x^2+y^2-4\)(vì \(\hept{\begin{cases}x+y=5\\xy=-2\end{cases}}\))   \(\Rightarrow x^2+y^2=29\)

Mặt khác \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=5\left(29+4\right)=165\)(vì \(\hept{\begin{cases}x+y=5\left(đề\right)\\xy=-2\left(đề\right)\\x^2+y^2=29\left(cmt\right)\end{cases}}\))

\(\Rightarrow x^3+y^3=165\)(ý thứ nhất)

Ta có \(xy=-2\Rightarrow x^2y^2=4\)\(\hept{\begin{cases}x+y=5\\xy=-2\end{cases}}\Rightarrow xy\left(x+y\right)=5.\left(-2\right)\Rightarrow x^3y+xy^3=-10\Rightarrow-\left(x^3y+xy^3\right)=10\)

Lại có \(\left(x+y\right)^4=x^4+4x^3y+6x^2y^2+4xy^3+y^4\)\(\Rightarrow5^4=x^4+y^4+4\left(x^3y+xy^3\right)+6.4\)( bởi lẽ \(\hept{\begin{cases}x+y=5\left(đề\right)\\x^2y^2=4\left(cmt\right)\end{cases}}\))

\(\Rightarrow625=x^4+y^4+4.\left(-10\right)+24\)(vì \(x^3y+xy^3=-10\left(cmt\right)\))\(\Rightarrow x^4+y^4=625-24+40=641\)

Mặt khác nữa, ta có \(x^5+y^5=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(\Rightarrow x^5+y^5=5.\left[\left(x^4+y^4\right)-\left(x^3y+xy^3\right)+x^2y^2\right]\)(vì \(x+y=5\left(đề\right)\))

\(\Rightarrow x^5+y^5=5\left(641+10+4\right)=3275\)(vì \(\hept{\begin{cases}x^4+y^4=641\left(cmt\right)\\-\left(x^3y+xy^3\right)=10\left(cmt\right)\\x^2y^2=4\left(cmt\right)\end{cases}}\)

Vậy \(x^5+y^5=3275\)(ý thứ hai)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$

$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$

$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$

$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$

$\Leftrightarrow 4Q=3$

$\Leftrightarrow Q=\frac{3}{4}$ 

 

NV
9 tháng 5 2021

\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)

\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)

\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2023

Lời giải:
Áp dụng BĐT AM-GM ta có:
$x^5+x^5+x^5+1+1\geq 5\sqrt[5]{x^{15}}=5x^3$
$y^5+y^5+y^5+1+1\geq 5\sqrt[5]{y^{15}}=5y^3$

$\Rightarrow 3(x^5+y^5)+4\geq 5(x^3+y^3)\geq 10$ (do $x^3+y^3\geq 2$)

$\Leftrightarrow x^5+y^5\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $x=y=1$

NV
20 tháng 8 2021

\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)

Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)

\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)

\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)

\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)

Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)

\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)

\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))

Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)