K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
23 tháng 6 2017

Đường tròn

8 tháng 3 2018
là câu a
8 tháng 3 2018

Ta có: ^BIC = 90o (do chắn đk BC) 
mà ^OMD = 90o (do DE _|_AB) 
=> tg BDMI nội tiếp 

19 tháng 12 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD     (1)

Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I

Suy ra: AI ⊥ CE     (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

2 tháng 3 2019

bn làm đc câu nào rồi

4 tháng 3 2019

làm được xong ý c rồi còn ý d nữa bn làm dc ko giúp mik vs