K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: Xét (O) có

MA,MN là tiếp tuyến

=>MA=MN

mà OA=ON

nên OM là đường trung trực của AN

=>OM\(\perp\)AN(1)

Xét (O) có
ΔANB nội tiếp

AB là đường kính

Do đó: ΔANB vuông tại N

=>AN\(\perp\)NB(2)

Từ (1) và (2) suy ra OM//NB

b: Xét ΔMAO vuông tại A và ΔKOB vuông tại O có

AO=OB

\(\widehat{AOM}=\widehat{OBK}\)

Do đó: ΔMAO=ΔKOB

=>MA=KO

Xét tứ giác MAOK có

MA//OK

MA=OK

Do đó: MAOK là hình bình hành

mà \(\widehat{MAO}=90^0\)

nên MAOK là hình chữ nhật

=>KM\(\perp\)xy

 

22 tháng 3 2021

Ta có

\(AB=AC\) (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến hai tiếp điểm bằng nhau)

\(\Rightarrow\Delta ABC\) cân tại A (1)

AO là phân giác của \(\widehat{BAC}\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm của đường tròn là phân iacs của góc tạo bởi 2 tiếp tuyến) (2)

Từ (1) và (2) \(\Rightarrow AH\perp BC\) (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AHE}=90^o\) (*)

Ta có

\(OM=ON\) (Bán kính (O)) \(\Rightarrow\Delta OMN\) cân tại O

Ta có \(IM=IN\) (Giả thiết) => ON là đường trung tuyến của tg OMN

\(\Rightarrow OE\perp AN\) (Trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao, đường trung trực...)

\(\Rightarrow\widehat{AIE}=90^o\) (**)

Từ (*) và (**) => I và H cùng nhìn AE dưới hai góc bằng nhau và bằng 90 độ => I và H nằm trên đường tròn đường kính AE nên 4 điểm A;H;I;E cùng nằm trên 1 đường tròn

11 tháng 3 2022

Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng đi qua A và không đi qua O, cắt đường tròn tại hai điểm phân biệt MN (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB và AC với (O) (BC là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN. Đường thẳng OI cắt đường thẳng BC tại E. Chứng minh AHIE là tứ giác nội tiếp.

 

 

 theo gt, ta co: 

 là trung điểm của MN

9 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Mà OB ⊥ BC ⇒ IM ⊥ BC

Ta có:

IM ⊥ BC

BC ⋂ (I; IM) = {M}

Suy ra, BC là tiếp tuyến của đường tròn tâm I, bán kính IM