K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

a) kéo dài O1E,O2F cắt CD ở M và N 

b) góc BFI + góc BEI =180 

c) gọi AB cắt EF ở K 

bằng đồng dạng ta chứng minh được KE=KF=KB.KA(đpcm)

2 tháng 1

 Gọi Q là giao điểm của PA và (O2). Do \(\widehat{O_1AP}=\widehat{O_1PA}=\widehat{O_2PQ}=\widehat{O_2QP}\) nên O1A//O2Q

 Mặt khác, \(BC\perp O_1A\) (vì BC là tiếp tuyến tại A của (O1) nên \(BC\perp O_2Q\)

 \(\Rightarrow\) Q là điểm chính giữa của cung nhỏ BC 

 \(\Rightarrow\) PQ là tia phân giác \(\widehat{BPC}\) \(\Rightarrow\) đpcm

1 tháng 2 2022
21 tháng 2 2022

a) Vì AH, HB, AB đều là các đường kính của các nửa đường tròn (O1) , (O2) và (O) nên tứ giác MPHQ có ba góc P, Q, M vuông. Vì vậy nó là hình chữ nhật.

Từ đó, ta có HM = PQ.
b) Vì MHPQ là hình chữ nhật nên \widehat{MPQ}=\widehat{MHQ}=\widehat{MBH}\left(=\dfrac{\stackrel\frown{HQ}}{2}\right), do đó APQB là tứ giác nội tiếp.

c) Ta có \widehat{O_1PA}=\widehat{PAO_1}=90^o-\widehat{HMP}=90^o-\widehat{MPQ}

\Rightarrow\widehat{O_1PA}+\widehat{MPQ}=90^o\Rightarrow\widehat{O_1PQ}=90^o nên PQ tiếp xúc nửa đường tròn (O1) tại P. 

Tương tự , PQ tiếp xúc (O2) tại Q hay PQ là tiếp tuyến chung của hai nửa đường tròn (O1) và (O2)

giải giúp vài bài nha mọi người thanks nhiều 1. Cho góc xOy và 1 đường tròn tiếp xúc với 2 cạnh của góc đó tại A và B, qua A kẻ đg thẳng song song OB cắt đg tròn tại C. Gọi K là t/điểm của đoạn OB, đg AK cắt đg tròn tại E. a) C/m: O,E,C thẳng hàng b) Đg AB cắt OC tại D. C/m: \(\dfrac{OE}{OC}=\dfrac{BE}{DC}\) 2. Cho \(\left(O_1;R_1\right)\) và \(\left(O_2;R_2\right)\) tiếp xúc ngoài tại D. Kẻ tiếp tuyến tại A của...
Đọc tiếp

giải giúp vài bài nha mọi người

thanks nhiều

1. Cho góc xOy và 1 đường tròn tiếp xúc với 2 cạnh của góc đó tại A và B, qua A kẻ đg thẳng song song OB cắt đg tròn tại C. Gọi K là t/điểm của đoạn OB, đg AK cắt đg tròn tại E.
a) C/m: O,E,C thẳng hàng
b) Đg AB cắt OC tại D. C/m: \(\dfrac{OE}{OC}=\dfrac{BE}{DC}\)

2. Cho \(\left(O_1;R_1\right)\)\(\left(O_2;R_2\right)\) tiếp xúc ngoài tại D. Kẻ tiếp tuyến tại A của đường tròn \(\left(O_1;R_1\right)\) cắt đường tròn \(\left(O_2;R_2\right)\) tại B và C. C/m: A cách đều BD và CD.

3. Cho 2 đường tròn phân biệt bằng nhau \(\left(O_1;R_{ }\right)\)\(\left(O_2;R_{ }\right)\) cắt nhau tại A và B. Qua A dựng cát tuyến bất kì cắt \(\left(O_1;R_{ }\right)\) tại C, cắt \(\left(O_2;R_{ }\right)\) tại D sao cho A nằm giữa C và D. Qua B vẽ đg thẳng vuông góc CD sao cho đg thẳng này cắt \(\left(O_1\right)\)\(\left(O_2\right)\) tương ứng tại E và F. C/m: CEDF là hình thoi.

1
24 tháng 12 2017

tớ chỉ làm đc 1 bài (bài 3)

mờ kinh luôn!! Thôi thì cứ vừa đọc vừa đoán ^^!

Góc tạo bởi tiếp tuyến và dây cung

1 tháng 1 2018

thanks bạn nhiều

15 tháng 12 2021

ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP

15 tháng 12 2021

xAC=QAy(hai góc đối đỉnh)

theo tính chất của 2 góc được tạo bởi tia tiếp tuyến

=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)

theo tính chất của góc nội tiếp,ta có

=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)

từ (1),(2)=> ABC=APQ

=> QP//BC

18 tháng 9 2017

Đường tròn c: Đường tròn với tâm O1 và bán kính 5 Đường tròn d: Đường tròn với tâm O2 và bán kính 2 Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [C, D] Đoạn thẳng l: Đoạn thẳng [O1, A] Đoạn thẳng m: Đoạn thẳng [O2, B] Đoạn thẳng n: Đoạn thẳng [O1, C] Đoạn thẳng p: Đoạn thẳng [O2, D] Đoạn thẳng q: Đoạn thẳng [O1, O2] Đoạn thẳng s: Đoạn thẳng [O2, H] O1 = (2.46, 0.9) O1 = (2.46, 0.9) O1 = (2.46, 0.9) O2 = (14, 2.1) O2 = (14, 2.1) O2 = (14, 2.1) Điểm A: Giao điểm đường của c, g Điểm A: Giao điểm đường của c, g Điểm A: Giao điểm đường của c, g Điểm B: Giao điểm đường của d, g Điểm B: Giao điểm đường của d, g Điểm B: Giao điểm đường của d, g Điểm C: Giao điểm đường của c, i Điểm C: Giao điểm đường của c, i Điểm C: Giao điểm đường của c, i Điểm D: Giao điểm đường của d, i Điểm D: Giao điểm đường của d, i Điểm D: Giao điểm đường của d, i Điểm I: Giao điểm đường của k, q Điểm I: Giao điểm đường của k, q Điểm I: Giao điểm đường của k, q Điểm H: Giao điểm đường của r, l Điểm H: Giao điểm đường của r, l Điểm H: Giao điểm đường của r, l

Gọi giao điểm của O1O2 và CD là I.

Ta thấy rằng \(\Delta O_1CI\sim\Delta O_2DI\) theo tỉ số đồng dạng là \(k=\frac{O_1C}{O_2D}=\frac{5}{2}\)

Đặt \(ID=2x\left(cm\right)\Rightarrow IC=5x\Rightarrow CD=7x\Rightarrow AB=1,5.7x=10,5x\)

Theo Pitago ta cũng có \(O_1I=\sqrt{25x^2+25};O_2I=\sqrt{4x^2+4}\left(1\right)\)

Xét hình thang vuông ABO2O1 , kẻ O2H vuông góc với AO1 , ta tính được \(HO_1=5-2=3\left(cm\right)\)

Vậy thì \(O_1O_2^2=O_2H^2+HO_1^2\Rightarrow O_1O_2=\sqrt{110,25x^2+9}\left(2\right)\)

Từ (1) và (2) suy ra \(\sqrt{110,25x^2+9}=\sqrt{25x^2+25}+\sqrt{4x^2+4}\)

\(\Leftrightarrow\sqrt{110,25x^2+9}=5\sqrt{x^2+1}+2\sqrt{x^2+1}\)

\(\Leftrightarrow\sqrt{110,25x^2+9}=7\sqrt{x^2+1}\)

\(\Leftrightarrow110,25x^2+9=49x^2+49\)

\(\Leftrightarrow x^2=\frac{32}{49}\Rightarrow O_1O_2=7.\sqrt{\frac{32}{49}+1}=9\left(cm\right)\)

Vậy O1O2 = 9 cm.