K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).

b) Ta có: \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\). Phương trình đường thẳng a là:

\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)

c) Ta có: \(\overrightarrow {{u_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}}  = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:

\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)

Trong mặt phẳng Oxy, cho điểm \(F\left( {0;\frac{1}{2}} \right)\), đường thẳng \(\Delta :y + \frac{1}{2} = 0\) và điểm \(M(x;y)\). Để tìm hệ thức giữa x và y sao cho \(M\) cách đều  F và \(\Delta \), một học sinh đã làm như sau:+) Tính MF và MH (với H là hình chiếu của M trên \(\Delta \)):\(MF = \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}} ,MH = d\left( {M,\Delta } \right) = \left| {y + \frac{1}{2}} \right|\)+) Điều kiện để M cách đều...
Đọc tiếp

Trong mặt phẳng Oxy, cho điểm \(F\left( {0;\frac{1}{2}} \right)\), đường thẳng \(\Delta :y + \frac{1}{2} = 0\) và điểm \(M(x;y)\). Để tìm hệ thức giữa x và y sao cho \(M\) cách đều  F và \(\Delta \), một học sinh đã làm như sau:

+) Tính MF và MH (với H là hình chiếu của M trên \(\Delta \)):

\(MF = \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}} ,MH = d\left( {M,\Delta } \right) = \left| {y + \frac{1}{2}} \right|\)

+) Điều kiện để M cách đều F  và \(\Delta \):

\(\begin{array}{l}MF = d\left( {M,\Delta } \right) \Leftrightarrow \sqrt {{x^2} + {{\left( {y - \frac{1}{2}} \right)}^2}}  = \left| {y + \frac{1}{2}} \right|\\ \Leftrightarrow {x^2} + {\left( {y - \frac{1}{2}} \right)^2} = {\left( {y + \frac{1}{2}} \right)^2}\\ \Leftrightarrow {x^2} = 2y \Leftrightarrow y = \frac{1}{2}{x^2}\left( * \right)\end{array}\)

Hãy cho biết tên đồ thị (P) của hàm số (*) vừa tìm được.

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết b và c tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.

NV
26 tháng 3 2022

\(d\left(A;\Delta\right)=\dfrac{\left|-3\left(m-2\right)+9\left(m+1\right)-5m+1\right|}{\sqrt{\left(m-2\right)^2+\left(m+1\right)^2}}\)

\(=\dfrac{\left|m+16\right|}{\sqrt{2m^2-2m+5}}=k\Rightarrow\left(m+16\right)^2=k^2\left(2m^2-2m+5\right)\)

\(\Rightarrow\left(2k^2-1\right)m^2-2\left(k^2+16\right)m+5k^2-256=0\)

\(\Delta'=\left(k^2+16\right)^2-\left(2k^2-1\right)\left(5k^2-256\right)\ge0\)

\(\Rightarrow0\le k^2\le61\) \(\Rightarrow k^2_{max}=61\) khi \(m=\dfrac{7}{11}\)

10 tháng 4 2020

hello

10 tháng 4 2020

hello

NV
23 tháng 3 2022

Thay tọa độ P; Q vào pt delta được 2 giá trị trái dấu

\(\Rightarrow P;Q\) nằm về 2 phía so với delta

\(\Rightarrow MP+MQ\le PQ\)

Dấu "=" xảy ra M;P;Q thẳng hàng hay M là giao điểm của đường thẳng PQ và delta

\(\overrightarrow{PQ}=\left(-9;-3\right)\Rightarrow\) đường thẳng PQ nhận (1;-3) là 1 vtpt

Phương trình PQ:

\(1\left(x-6\right)-3\left(y-1\right)=0\Leftrightarrow x-3y-3=0\)

Tọa độ M là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x-3y-3=0\end{matrix}\right.\) 

\(\Rightarrow M\left(0;-1\right)\)

NV
9 tháng 4 2021

(C) tâm \(I\left(1;0\right)\) bán kính \(R=2\)

(d) cắt (C) tại 2 điểm pb khi và chỉ khi: \(d\left(I;d\right)< R\)

(Nếu \(d\left(I;d\right)>R\) thì ko cắt, \(d\left(I;d\right)=R\) thì tiếp xúc, \(d\left(I;d\right)< R\) thì cắt tại 2 điểm pb)

\(\Leftrightarrow\dfrac{\left|1+2m\right|}{\sqrt{1^2+\left(1-m\right)^2}}< 2\)

\(\Leftrightarrow\left(2m+1\right)^2< 4\left(m^2-2m+2\right)\)

\(\Leftrightarrow...\)

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm