Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(1)= 12+2.m.1+m2
=1+2m+m2
Q(-1)= (-1)2+(2m+1).(-1) +m2
=1-2m-1+m2
= m2-2m
P(1)-Q(-1)= 1+2m+m2-m2+2m=0
1+4m=0
=>m=-4
Ta có: M(x)=x4+2x2+1
1. Thay x=1 vào M(x) ta được: M(1)=1+2.1+1=4
Thay x=-1 vào M(x) ta được: M(-1)=(-1)2+2.(-1)2+1=4
2. Đặt t=x2 (t\(\ge\)0)
Ta được: M(t)=t2+2t+1=(t+1)2=0
\(\Leftrightarrow t=-1\) (KTM)
\(\Rightarrow\) M(x) vô nghiệm (dpcm)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
\(P\left(x\right)-Q\left(x\right)=\left(-2x+\frac{1}{2}x^2+3x^4-3x^2-3\right)-\left(3x^4+x^3-4x^2+1,5x^3-3x^4+2x+1\right)\\ P\left(x\right)-Q\left(x\right)=-2x+\frac{1}{2}x^2+3x^4-3x^2-3-3x^4-x^3+4x^2-1,5x^3+3x^4-2x-1\\ P\left(x\right)-Q\left(x\right)=\left(-2x-2x\right)+\left(\frac{1}{2}x^2-3x^2+4x^2\right)+\left(3x^4-3x^4+3x^4\right)+\left(-3-1\right)+\left(-x^3-1,5x^3\right)\\ P\left(x\right)-Q\left(x\right)=-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3\)
\(R\left(x\right)+P\left(x\right)-Q\left(x\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)+\left(P\left(x\right)-Q\left(x\right)\right)+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{3}{2}x^2+3x^4-4-\frac{5}{2}x^3+x^2=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\left(\frac{3}{2}x+x^2\right)+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)-4x+\frac{5}{2}x^2+3x^4-4-\frac{5}{2}x^3=2x^3-\frac{3}{2}x+1\\ \Rightarrow R\left(x\right)=2x^3-\frac{3}{2}x+1+4x-\frac{5}{2}x^2-3x^4+4+\frac{5}{2}x^3\\ \Rightarrow R\left(x\right)=\left(2x^3+\frac{5}{2}x^3\right)+\left(\frac{-3}{2}x+4x\right)+\left(1+4\right)-\frac{5}{2}x^2-3x^4\\ \Rightarrow R\left(x\right)=\frac{9}{2}x^3+\frac{5}{2}x+5-\frac{5}{2}x^2-3x^4\)
Thay x=1 ta có:
P(x)=1 +2m+m2
Q(x)=1-2m-1+m =m2-2m
De P(x)= Q(x)
=>1+2m+m2=m2-2m
=>4m=-1
=> m=-1/4
Bài 1:
1. Thay x=-5;y=3 vào P ta được:
P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40
2. P=2x(x+y-1)+y2+1
\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
Bài 2:
1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)
\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0
Vậy x=-4 là nghiệm của f(x)
3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)
Bạn tham khảo nha, không hiểu cứ hỏi mình ha
Theo bài ra ta có:
\(3\cdot1^2+5.m.1+m^2=2\left(-1\right)^2-\left(2m+1\right)\left(-1\right)+2m^2\)
\(\Rightarrow3+5m+m^2=2+2m+1+2m^2\)
\(\Rightarrow\left(3-3\right)+\left(5m-2m\right)=2m^2-m^2\)
\(\Rightarrow3m=m^2\)
\(\Rightarrow m=3\)
thank