\(A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\) va 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2018

\(A=\frac{3}{2-x}+\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)

\(A=\frac{-3}{x-2}+\frac{3}{x+2}+\frac{3x^2}{\left(x+2\right)\left(x-2\right)}\)

\(A=\frac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-3x-6+3x-6+3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-12+3x^2}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(-4+x^2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(A=3\)

14 tháng 12 2018

\(a,A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)

       \(=\frac{-3\left(x+2\right)-3\left(x-2\right)+3x^2}{\left(x-2\right)\left(x+2\right)}\)

       \(=\frac{-3x-6-3x+6+3x^2}{\left(x-2\right)\left(x+2\right)}\)

       \(=\frac{3x^2-6x}{\left(x-2\right)\left(x+2\right)}\)

      \(=\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

      \(=\frac{3x}{x+2}\)

\(b,ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm2\\x\ne-1\end{cases}}}\)

Ta có : \(P=A:B=\frac{3x}{x+2}:\frac{x+1}{x+2}\)

                              \(=\frac{3x}{x+2}.\frac{x+2}{x+1}\)

                             \(=\frac{3x}{x+1}\)

                             \(=\frac{3x+3}{x+1}-\frac{3}{x+1}\)

                           \(=3-\frac{3}{x+1}\)

Để P nguyên thì \(3-\frac{3}{x+1}\inℤ\)

                          \(\Leftrightarrow\frac{3}{x+1}\inℤ\)

Vì \(x\inℤ\Rightarrow x+1\inℤ\)

Ta có bảng :

x + 1                     -3                    -1                   1                          3                        
x-4-202

Vậy \(x\in\left\{-4;-2;0;2\right\}\)

22 tháng 11 2017

giup minh voi cac ban

9 tháng 1 2018

dkxd  \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)

b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)

\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)

tới khúc này bí rồi ^^

9 tháng 1 2018

a,ĐKXĐ của A là:\(x\ne+2;-2\)

b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)

c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)

Ta có bảng

\(x^2-4\)x
4\(\sqrt{8}\)
-4 0
2\(\sqrt{6}\)
-2\(\sqrt{2}\)
1\(\sqrt{5}\)

Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))

Bài 2: 

a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)

\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)

b: Thay x=1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)

Thay x=-1/2 vào B, ta được:

\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)

c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)

=>6(x-2)=-1/2

=>x-2=-1/12

hay x=23/12

18 tháng 12 2018

r3t4yjytuky

18 tháng 12 2018

ai luot wa xinn co tam tra loi ho