K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

giup minh voi cac ban

3 tháng 8 2015

nhỉn vào dễ thấy

mẫu chung là (4-x2)x

lấy BT chia cho mẫu ở trên (bằng máy)

ra 4x2-8x

đến đây dễ rồi

9 tháng 1 2018

dkxd  \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)

b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)

\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)

tới khúc này bí rồi ^^

9 tháng 1 2018

a,ĐKXĐ của A là:\(x\ne+2;-2\)

b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)

c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)

Ta có bảng

\(x^2-4\)x
4\(\sqrt{8}\)
-4 0
2\(\sqrt{6}\)
-2\(\sqrt{2}\)
1\(\sqrt{5}\)

Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))

11 tháng 2 2019

Hỏi đáp Toán

bạn xài cái này gõ công thức ra đi

11 tháng 2 2019

giúp man luôn nè : \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2+2}\)

14 tháng 12 2018

\(A=\frac{3}{2-x}+\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)

\(A=\frac{-3}{x-2}+\frac{3}{x+2}+\frac{3x^2}{\left(x+2\right)\left(x-2\right)}\)

\(A=\frac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-3x-6+3x-6+3x^2}{\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{-12+3x^2}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(-4+x^2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(A=3\)

14 tháng 12 2018

\(a,A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)

       \(=\frac{-3\left(x+2\right)-3\left(x-2\right)+3x^2}{\left(x-2\right)\left(x+2\right)}\)

       \(=\frac{-3x-6-3x+6+3x^2}{\left(x-2\right)\left(x+2\right)}\)

       \(=\frac{3x^2-6x}{\left(x-2\right)\left(x+2\right)}\)

      \(=\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

      \(=\frac{3x}{x+2}\)

\(b,ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm2\\x\ne-1\end{cases}}}\)

Ta có : \(P=A:B=\frac{3x}{x+2}:\frac{x+1}{x+2}\)

                              \(=\frac{3x}{x+2}.\frac{x+2}{x+1}\)

                             \(=\frac{3x}{x+1}\)

                             \(=\frac{3x+3}{x+1}-\frac{3}{x+1}\)

                           \(=3-\frac{3}{x+1}\)

Để P nguyên thì \(3-\frac{3}{x+1}\inℤ\)

                          \(\Leftrightarrow\frac{3}{x+1}\inℤ\)

Vì \(x\inℤ\Rightarrow x+1\inℤ\)

Ta có bảng :

x + 1                     -3                    -1                   1                          3                        
x-4-202

Vậy \(x\in\left\{-4;-2;0;2\right\}\)

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

4 tháng 9 2017

ĐK : \(x\ne-2\)

ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)

             \(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\) 

vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)

=> \(A>=\frac{2}{3}\)

dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)

16 tháng 12 2015

\(25x^2+16y^2=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)

\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)

Mặt khác, ta cũng có:  \(25x^2+16y^2=50xy\)

\(\Leftrightarrow\)  \(\left(5x-4y\right)^2=10xy\)

Do đó:

\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)

Vậy,  \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)

16 tháng 12 2015

1)

 \(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)

\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)

\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)