\(\le\)a\(\le b\le2\)

Tìm GTLN của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2019

Áp dụng BĐT Cauchy:

\(M\le\dfrac{a^3+b^3+c^3}{\dfrac{a^3+b^3+c^3}{3}}=3\)

Vậy Mmax=3\(\Leftrightarrow\left\{{}\begin{matrix}a=b=c\\1\le a,b,c\le2\end{matrix}\right.\)

1 tháng 4 2015

vì 1<hoặcc<hoặc=b<hoặc=a<hoặc=2

=>a+b+c<hoặc=6(1)

lại có:1/a+1/b+1/c<hoặc=3/2(2)

từ (1)và(2) =>(a+b+c)(1/a+1/b+1/c)<hoặc=6.3/2=9<hoặc=10

14 tháng 2 2016

bạn oiiiiiiiiiiiiiiiiiiiiii sai đề

1 tháng 4 2018

\(VT=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)

\(=3+\frac{6abc}{abc}\)

\(\Rightarrow9\le10\left(đpcm\right)\)

P/s: Còn cách dài dòng hơn nhé

3 tháng 8 2019

\(VT=\frac{a}{a}+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{b}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+\frac{c}{c}\)

\(=3+\frac{6abc}{abc}\)

\(\Rightarrow9\le10\left(đpcm\right)\)