\(\sqrt{1},\sqrt{2},\sqrt{3},...,\sqrt{1050}\) . Chọn 33 số trong các số tr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2016

a) 1,(3) = 10+(3-1)/9 =12/9 = 4/3

...................

b) chẳng hiu dau bai

c) = 5 ; =7 ; = 10

22 tháng 10 2016

hình như b hỏi \(\sqrt{49}\) bằng mấy ă bn Linh

22 tháng 4 2020

chia hình chữ nhật 3x4 thành 5 phần gồm 3 hình ngồi nhà , zà 2 hình nửa ngồi nhà ( ko biết zẽ hình ) 

. KHi đó 6 điểm chắc chắn nằm trong 5 hình này , mà 6=5.1+1 , nên sẽ có 2 điểm trong 1 hính ( theo nguyên lý Dirichlet) , giả sử 2 điểm đó là A,B  . Dễ CM được AB\(\le5\)( dùng pi-to-go nha man) . dpcm

2 tháng 10 2015

chọn A. Vì \(\frac{1}{\sqrt{4}}=\frac{1}{2}\) là số hữu tỉ

2 tháng 10 2015

A vì căn 2 của 4 là 2 

10 tháng 6 2017

Trong các số trên, số 0,010010001.... là số vô tỉ.

Vậy đáp án đúng trong câu trên là câu D.

4 tháng 11 2018

Bài 2 :

Giả sử \(a=\sqrt{3}\)là số hữu tỉ

Khi đó ta có \(a=\sqrt{3}=\frac{m}{n}\)với m, n tối giản ( n khác 0 )

Từ \(\sqrt{3}=\frac{m}{n}\Rightarrow m=\sqrt{3}n\)

Bình phương 2 vế ta được đẳng thức: \(m^2=3n^2\)(*)

\(\Rightarrow m^2⋮3\)mà m tối giản \(\Rightarrow m⋮3\)

=> m có dạng \(3k\)

Thay m vào (*) ta có : \(9k^2=3n^2\)

\(\Leftrightarrow3k^2=n^2\)

\(\Leftrightarrow n=\sqrt{3}k\)

Vì k là số nguyên => n không là số nguyên

=> điều giả sử là sai

=> \(\sqrt{3}\)là số vô tỉ

Giúp mình với:Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?Câu 3:a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)c,Chứng minh...
Đọc tiếp

Giúp mình với:

Câu 1:Cho B= \(\frac{1}{2\left(n-1\right)^2+3}\).Tìm số nguyên n để B có giá trị lớn nhất.

Câu 2:Độ dài ba cạnh của một tam giác tỉ lệ với 2;3;4. Hỏi ba chiều cao trương ứng ba cạnh đó tỉ lệ với số nào?

Câu 3:

a, Tính A=1+1/2(1+2)+1/3(1+2+3)+...+1/20(1+2+3+...+20)

b, So sánh \(\sqrt{17}+\sqrt{26}+1\) và \(\sqrt{99}\)

c,Chứng minh rằng: \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Câu 4: Tìm một số có 3 chữ số biết rằng số đó chia hết cho 18 và các chữ số của nó tỷ lệ với 1;2;3.

Các bạn ạ! Mình cảm thấy rất có lỗi khi đã hỏi quá nhiều! Các bạn trả lời cho mình rất nhiệt tình mà mình chỉ trả lời chỉ có vài câu hỏi của các bạn! Mong các bạn lượng thứ! Mình hứa lên lớp thì mình sẽ giảng giải lại cho các bạn. Chúc HỌC24 phát triển mạnh, các bạn học giỏi lên mỗi ngày với HỌC24 nha!

5
20 tháng 6 2016

Mỗi câu hỏi bạn chỉ đăng 1 bài toán lên thôi nha nếu muốn nhận được câu trả lời nhanh haha

Câu 1 : 

\(B=\frac{1}{2\left(n-1\right)^2+3}\) có GTLN

<=> 2(n - 1)2 + 3 có GTNN

Ta có : (n - 1)2 > 0 => 2(n - 1)2 > 0 => 2(n - 1)2 + 3 > 3

=> GTNN của 2(n - 1)2 + 3 là 3 <=> (n - 1)2 = 0 <=> n = 1

Vậy B có GTLN là \(\frac{1}{3}\) <=> n = 1

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)