K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 2 2019

Lời giải:

Cách 1:

Áp dụng BĐT S.Vacxo ta có:

\(\frac{1}{xy+1}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{3+xy+yz+xz}(1)\)

Theo BĐT Cauchy ta có bổ đề quen thuộc:

\(xy+yz+xz\leq x^2+y^2+z^2\leq 3(2)\)

Từ \((1);(2)\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9}{3+xy+yz+xz}\geq \frac{9}{3+3}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\Leftrightarrow x=y=z=1\)

Cách 2:

Áp dụng BĐT Cauchy cho các số dương:

\(\frac{1}{xy+1}+\frac{xy+1}{4}\geq 2.\sqrt{\frac{1}{xy+1}.\frac{xy+1}{4}}=1\)

\(\frac{1}{yz+1}+\frac{yz+1}{4}\geq 2.\sqrt{\frac{1}{yz+1}.\frac{yz+1}{4}}=1\)

\(\frac{1}{xz+1}+\frac{xz+1}{4}\geq 2.\sqrt{\frac{1}{xz+1}.\frac{xz+1}{4}}=1\)

Cộng tất cả các BĐT trên theo vế và rút gọn:

\(\Rightarrow \frac{1}{xy+1}+\frac{1}{yz+1}+\frac{1}{xz+1}\geq \frac{9-(xy+yz+xz)}{4}\geq \frac{9-3}{4}=\frac{3}{2}\)

Vậy \(P_{\min}=\frac{3}{2}\)

10 tháng 2 2019

a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)

Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)

\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)

b)  x2 + y2 + z2 - xy - 3y - 2z + 4 = 0

4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0

( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0

( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0

Ta có : ( 2x - y )2 \(\ge\)0 ;  3 ( y - 2 )2 \(\ge\)0 ;  4 ( z - 1 )2 \(\ge\)0

Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0 

\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)

Vậy ....