Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số bị chia cho 7 là a .
Giả sử a là 777 , thì a chia hết cho 7 ; 7 + 7 + 7 = 21 chia hết cho 7 .
Nếu bạn nào thấy đúng , nhớ k cho mình nha !
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath
Số tự nhiên có 3 chữ số mà chữ số hàng chục bằng chữ số hàng đơn vị là: \(\overline{abb}\)( a khác 0, a,b,c là số tự nhiên có 1 chữ số)
\(\overline{abb}=a.100+b.10+b=a.100+b.11=98a+2a+7b+4b\)
\(=\left(98a+7b\right)+\left(2a+4b\right)=7\left(14a+7\right)+2\left(a+2b\right)\)
Theo bài ra : \(\overline{abb}\) chia hết cho 7 mà \(7\left(14a+7\right)⋮7\)
=> \(2\left(a+2b\right)⋮7\)=> \(a+2b⋮7\)=> a + b + b chia hết cho 7
Vậy tổng các chữ số \(\overline{abb}\) chia hết cho 7.
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Số có ba chữ số có dạng: \(\overline{abc}\)
Tổng của ba chữ số đó là: a + b + c = 7
Mặt khác ta có: \(\overline{abc}\) = 100a + 10b + c
\(\overline{abc}\) = 98a + 2a + 7b + 2a + c
\(\overline{abc}\) = 7.(14a + b) + 2a + 3b + c
⇒ \(\overline{abc}\) \(⋮\) 7 ⇔ 2a + 3b + c ⋮ 7
⇒ 2a + 2b + 2c + b - c ⋮ 7
⇒ 2(a + b + c) + b - c ⋮ 7
⇒ 2.7 + b - c ⋮ 7
⇒ b - c ⋮ 7
⇒ b - c \(\) = 0; 7;
⇒ \(\left[{}\begin{matrix}b=c\\b=c+7\end{matrix}\right.\)
Nếu b = c + 7 ⇒ a + b + c = a + c + 7 + c = 7
⇒ a + (c + c) = 7 - 7
⇒ a + 2c = 0 ⇒ a = c = 0 (vô lý)
Vậy b = c + 7 (loại)
Vậy b = c
Kết luận: số có 3 chữ số mà tổng các chữ số của số đó bằng 7 sẽ chia hết cho 7 khi và chỉ khi chữ số hàng chục bằng chữ số hàng đơn vị.
Gọi số cần tìm là abb {gạch đầu} (a,b,c thuộc N,a#0)
Theo đề: a + b + b = a + 2b chia hết cho 7
Xét:
abb { gạch đầu } = 100a + 11b
= 98a + 7b + 2a + 4b
= 7(14a + b) + 2(a + 2b)
Mà 7.(14a + b) chia hết cho 7
và 2(a + 2b) chia hết cho 7(vì a + 2b chia hết cho 7)
=> abb { gạch đầu } chia hết cho 7
GỌI SỐ CẦN TÌM LÀ : abc . TA CÓ :
abc = 100a +10b+c= 98a +2a +7b+3b+c= 7*( 14a+b) +(2a +3b+c)= 7*(14b+c) +(2a +2b+2c)\(⋮7\). VÌ b=c , a+b+c \(⋮7\)(gt)
Giả sử : a+b+b=a+2b chia hết cho 7
Xét:
abb = 100a+11b = 98a+7b+2a+4b = 7(14a+b)+2(a+2b)
Mà 7.(14a+b) chia hết cho 7
và 2(a+2b) chia hết cho 7(vì a+2b chia hết cho 7)
=> abb chia hết cho 7 ( thỏa mãn đk đề bài )
Câu hỏi của Hoàng Hoàng Long⁀ᶦᵈᵒᶫ⁀2k8 - Toán lớp 6 - Học toán với OnlineMath