Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{\frac{1+\sin}{1-\sin}}-\sqrt{\frac{1-\sin}{1+\sin}}\)
\(=\sqrt{\frac{1-\sin^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{1-\sin^2}{\left(1+\sin\right)^2}}\)
\(=\sqrt{\frac{\cos^2}{\left(1-\sin\right)^2}}-\sqrt{\frac{\cos^2}{\left(1+\sin\right)^2}}\)
\(=\frac{\cos}{1-\sin}-\frac{\cos}{1+\sin}=\cos.\left(\frac{1}{1-\sin}-\frac{1}{1+\sin}\right)\)
\(=\cos.\frac{2\sin}{1-\sin^2}=\frac{2\sin\cos}{\cos^2}=\frac{2\sin}{\cos}=2\tan\)


mình nghĩ nên sửa đề là \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)
với a,b,x,y là số thực ta luôn có \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ay-bx\right)^2\)
từ đẳng thức này ta suy ra \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\)
dấu "=" xảy ra khi \(\left(ax-by\right)^2=0\)
trở lại bài toán ta luôn có \(\left(a\cos\alpha+b\sin\alpha\right)^2\le\left(a^2+b^2\right)\left(\cos^2\alpha+\sin^2\alpha\right)=a^2+b^2\)
từ đó ta có \(-\sqrt{a^2+b^2}\le a\cos\alpha+b\sin\alpha\le\sqrt{a^2+b^2}\)

Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.