Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(t=ab+bc+ca\)
\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)
mặt khác
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)
khi đó
\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)
xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)
\(f'\left(t\right)=-\frac{9}{t^2}< 0\)
=> f(t) N Biến \(\left(-\infty,3\right)\)
min f(t)=f(3)=1
koo tồn tại max\(f\left(t\right)\)
zậy minP=1 khi a=b=c=1
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Lời giải:
Tìm min:
Áp dụng hệ thức quen thuộc của BĐT AM-GM là $a^2+b^2+c^2\geq ab+bc+ac$
$\Rightarrow P=\frac{a^2+b^2+c^2}{ab+bc+ac}\geq 1$
Vậy $P_{\min}=1$ khi $a=b=c=1$
---------------------------
Tìm max:
Đặt $ab+bc+ac=t$
Ta có: \(P=\frac{(a+b+c)^2-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2(ab+bc+ac)}{ab+bc+ac}=\frac{9-2t}{t}=\frac{9}{t}-2(1)\)
Vì $a,b,c\leq 2\Rightarrow (a-2)(b-2)(c-2)\leq 0$
$\Leftrightarrow abc-2(ab+bc+ac)+4(a+b+c)-8\leq 0$
$\Leftrightarrow 2(ab+bc+ac)\geq abc+4(a+b+c)-8=abc+4$
Mà $a,b,c\geq 0\Rightarrow abc\geq 0$
$\Rightarrow 2(ab+bc+ac)\geq abc+4\geq 4\Rightarrow t=ab+bc+ac\geq 2(2)$
Từ $(1);(2)\Rightarrow P\leq \frac{9}{2}-2=\frac{5}{2}$
Vậy $P_{\max}=\frac{5}{2}$ khi $(a,b,c)=(0,2,1)$ và hoán vị.
Huyền Subi: $a,b,c$ đều là số không âm thì làm sao mà giá trị min P lại âm được bạn? Hơn nữa, lớp 9 thì chưa học đạo hàm, nên lời giải này không có giá trị.
từ gt \(\Rightarrow\)abc>0 => (2-a)(2-b)(2-c)>0 =>
8+2(ab+bc+ca)−4(a+b+c)−abc≥0 => 2(ab+bc+ca) \(\ge\)4 + abc \(\ge\)4
=> (a+b+c)^2≥4+a2+b2+c2 => a^2+b^2+c^2 \(\le\) 5
Băng Băng 2k6, Vũ Minh Tuấn, Nguyễn Việt Lâm, HISINOMA KINIMADO, Akai Haruma, Inosuke Hashibira,
Nguyễn Lê Phước Thịnh, Nguyễn Thị Ngọc Thơ, Nguyễn Thanh Hiền, Quân Tạ Minh, @tth_new
Help meeee! thanks nhiều ạ
Ta có : \(\hept{\begin{cases}0\le a\le2\\0\le b\le2\\0\le c\le2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a\left(2-a\right)\ge0\\b\left(2-b\right)\ge0\\c\left(2-c\right)\ge0\end{cases}}\)
\(\Rightarrow-a^2+2a-b^2+2b-c^2+2c\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\le2\left(a+b+c\right)=2.3=6\)
Vậy Max P = 6