\(0\le a,b,c\le1\)

Chứng minh: \(a^2+b^2+c^2-ab-bc-ac\le1\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

$a(a-1)\leq 0 <=> a^2\leq 0 => \sum a^2 \leq \sum a$
$(a-1)(b-1)(c-1)\leq 0 <=> a+b+c-\sum ab +abc -1 \leq 0$
$<=> \sum a^2 -\sum ab \leq a+b+c-\sum ab \leq 1-abc\leq 1$
^^ Mong olm dịch đ.c tatex mình ghi :v

11 tháng 6 2017

http://imgur.com/a/oPw0z
Đây là bài làm của mình :)

26 tháng 3 2017

Ta có: \((1-a)(1-b)(1-c)\geq 0\)

\(\Rightarrow 1-abc+(ab+bc+ca)-(a+b+c)\geq 0\)

\(\Rightarrow 1-(a+b+c)+(ab+bc+ca)\geq 0\)

\(\Rightarrow (a+b+c)-(ab+bc+ca)\leq 1\)

\(a;b;c\in \left [ 0;1 \right ]\) nên \(b^{2}\leq b;c^{3}\leq c\)

\(\Rightarrow a+b^{2}+c^{3}-ab-bc-ca\leq a+b+c-(ab+bc+ca)\leq 1\)

Đẳng thức xảy ra khi \(b=c=1\)\(a=0\)

26 tháng 3 2017

cho a,b,c thuộc [0;1]. cmr $a+b^{2}+c^{3}+ab+bc+ca \leq 1$ - Bất đẳng thức và cực trị - Diễn đàn Toán học

22 tháng 6 2020

Đợi t qua thi nhé full.

24 tháng 3 2020

\(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3\)

\(\Rightarrow a+b^2+c^3\le a+b+c\)

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\le1\)

=> đpcm

17 tháng 2 2019

\(1\ge a,b,c\ge0\)\(\Rightarrow b^2\le b;c^3\le c\)

\(\Rightarrow a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\) (1)

\(1\ge a,b,c\ge0\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Leftrightarrow abc+a+b+c-ab-bc-ca-1\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1-abc\)

\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow-abc\le0\)

\(\Rightarrow a+b+c-ab-bc-ca\le1\) (2)

Từ (1) và (2) \(\Rightarrow a+b^2+c^3-ab-bc-ca\le1\)

banhqua