K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
29 tháng 11 2020

xét tam giác ABO vuông tại B nên ta có 

\(AB^2=AO^2-OB^2=AO^2-R^2=8^2-3^2=55\)

\(\Rightarrow AB=\sqrt{55}cm\)

O B A

1: \(AO=\sqrt{3^2+8^2}=\sqrt{73}\left(cm\right)\)

BC=2*R=6cm

\(CA=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)

BD=6*8/10=4,8cm

2: Xét ΔBCE có

O là trung điểm của BC

OH//CE

=>H là trung điểm của BE

ΔOBE cân tại O

mà OH là trung tuyến

nên OH là phân giác của góc BOE

Xét ΔOBA và ΔOEA có

OB=OE

góc BOA=góc EOA

OA chung

=>ΔOBA=ΔOEA
=>góc OEA=90 độ

=>AE là tiếp tuyến của (O)

a) Xét tứ giác OBAC có

\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

17 tháng 5 2017

a, Tính được OB=10cm

b, Ta có ∆OBC = ∆OBA (c.g.c) => BC là tiếp tuyến của đường tròn (O)

16 tháng 12 2023

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của BA(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại trung điểm H của AB

b: Xét (O) có

\(\widehat{MAP}\) là góc tạo bởi tiếp tuyến AM và dây cung AP

\(\widehat{AQP}\) là góc nội tiếp chắn cung AP

Do đó: \(\widehat{MAP}=\widehat{AQP}\)

=>\(\widehat{MAP}=\widehat{MQA}\)

Xét ΔMAP và ΔMQA có

\(\widehat{MAP}=\widehat{MQA}\)

\(\widehat{AMP}\) chung

Do đó: ΔMAP đồng dạng với ΔMQA

=>\(\dfrac{MA}{MQ}=\dfrac{AP}{QA}\left(1\right)\)

Xét (O) có

ΔQAP nội tiếp

QP là đường kính

Do đó: ΔQAP vuông tại A

Xét ΔHAP vuông tại H và ΔHQA vuông tại H có

\(\widehat{HAP}=\widehat{HQA}\left(=90^0-\widehat{HPA}\right)\)

Do đó: ΔHAP đồng dạng với ΔHQA

=>\(\dfrac{HA}{HQ}=\dfrac{AP}{QA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{MA}{MQ}=\dfrac{HA}{HQ}\)

=>\(MA\cdot HQ=MQ\cdot HA\)