Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: l = 1745,25m ± 0,01m có độ chính xác đến hàng phần trăm (độ chính xác là 0,01) nên ta quy tròn số đến hàng phần chục.
Vậy số quy tròn của 1745,25m là 1745,3 m.
Ta có: l = 1745,25m ± 0,01m có độ chính xác đến hàng phần trăm (độ chính xác là 0,01) nên ta quy tròn số đến hàng phần chục.
Vậy số quy tròn của 1745,25m là 1745,3 m.
Gọi lượng kẹo mà Cassidy đã ăn trong ngày đầu tiên là \(x\), \(x\inℕ^∗\). Khi đó lượng kẹo mà Kyle đã ăn trong ngày đầu tiên là \(\dfrac{4}{3}x\). Đến đây, ta thêm một điều kiện nữa là \(x⋮3\).
Số kẹo còn lại là \(31-x-\dfrac{4}{3}x=31-\dfrac{7}{3}x\)
Gọi số kẹo mà Cassidy đã ăn trong ngày thứ hai là \(y,y\inℕ^∗\). Khi đó số lượng kẹo mà Kyle đã ăn trong ngày thứ hai là \(\dfrac{3}{2}y\). Đến đây, ta thêm tiếp điều kiện \(y⋮2\).
Số kẹo còn lại là \(31-\dfrac{7}{3}x-y-\dfrac{3}{2}y=31-\dfrac{7}{3}x-\dfrac{5}{2}y\).
Sau ngày thứ hai, số kẹo đã hết nhẵn nên ta có pt \(31=\dfrac{7}{3}x+\dfrac{5}{2}y\) \(\Leftrightarrow14x+15y=186\) \(\Leftrightarrow y=\dfrac{186-14x}{15}\). Do \(x\inℕ^∗\) nên \(186-14x>0\Leftrightarrow x< \dfrac{186}{14}\Leftrightarrow x\le13\).
Do \(x⋮3\) nên \(x\in\left\{3;6;9;12\right\}\). Nếu \(x=3\Rightarrow y=\dfrac{48}{5}\left(loại\right)\)
Nếu \(x=6\Rightarrow y=\dfrac{34}{5}\left(loại\right)\)
Nếu \(x=9\Rightarrow y=4\left(nhận\right)\)
Nếu \(x=12\Rightarrow y=\dfrac{6}{5}\left(loại\right)\)
Vậy \(x=9;y=4\), từ đây suy ra Cassidy đã ăn \(x+y=9+4=13\) miếng sô cô la.
\(f\left(-x\right)=\dfrac{\left(-x\right)^2+4}{\left(-x\right)^4}=\dfrac{x^2+4}{x^4}=f\left(x\right)\)
Vậy: f(x) là hàm số chẵn
a: Vì OA<OB
nên điểmA nằm giữa O và B
mà OA=1/2OB
nên A là trung điểm của OB
b: BI=AB/2=3cm
=>OI=9cm
Ta có: l = 1745,25m ± 0,01m có độ chính xác đến hàng phần trăm (độ chính xác là 0,01) nên ta quy tròn số đến hàng phần chục.
Vậy số quy tròn của 1745,25m là 1745,3 m.