K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:

Gọi $R(x)$ là đa thức dư khi chia $P(x)$ cho $(x-1)(x-2)(x-3)(x-4)$. Bậc của $R(x)$ phải nhỏ hơn bậc đa thức chia. Do đó đặt:

\(R(x)=ax^3+bx^2+cx+d\)

\(P(x)=Q(x)(x-1)(x-2)(x-3)(x-4)+ax^3+bx^2+cx+d\)

Trong đó $Q(x)$ là đa thức thương.

Theo định lý Bê-du về phép chia đa thức:

\(\left\{\begin{matrix} P(1)=a+b+c+d=-2019\\ P(2)=8a+4b+2c+d=-2036\\ P(3)=27a+9b+3c+d=-2013\\ P(4)=64a+16b+4c+d=-1902\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} a=8\\ b=-28\\ c=11\\ d=-2010\end{matrix}\right.\)

Vậy \(R(x)=8x^3-28x^2+11x-2010\)

b)

Từ phần a suy ra:

\(\left\{\begin{matrix} R(1)=P(1)=-2019\\ R(2)=P(2)=-2036\\ R(3)=P(3)=-2013\\ R(4)=P(4)=-1902\\ R(5)=8.5^3-28.5^2+11.5-2010=-1655\end{matrix}\right.\)

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)a) Xác định P(x)b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).Bài 3: Xác định phần dư R(x) của phép chia:                                                                    ...
Đọc tiếp

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)

Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).

Bài 3: Xác định phần dư R(x) của phép chia:                                                                                                                         \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)

Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)

Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)

Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)

Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!! vui

0
18 tháng 12 2017

a) \(P\left(1\right)=1-a+b-c+d-2010=-2011\)

\(\Rightarrow a-b+c-d=2\)

\(P\left(-1\right)=-1-a-b-c-d-2010=-2045\)

\(\Rightarrow a+b+c+d=34\)

\(\Rightarrow\hept{\begin{cases}2b+2d=32\\2a+2c=36\end{cases}}\Leftrightarrow\hept{\begin{cases}b+d=16\\a+c=18\end{cases}}\)

\(P\left(2\right)=32-16a+8b-4c+2d-2010\)

\(=-12a-4\left(a+c\right)+2\left(b+d\right)+6b-1978\)

\(=-12a-4.18+2.16+6b-1978\)

\(=-12a+6b-2018=-2084\)

\(\Rightarrow2a-b=11\)

\(P\left(3\right)=243-81a+27b-9c+3d-2010\)

\(=243-72a-9\left(a+c\right)+3\left(b+d\right)+24b-2010\)

\(=243-72a+24b-9.18+3.16-2010=-2385\)

\(\Rightarrow-72a+24b=-504\Rightarrow3a-b=21\)

Từ đó ta có  \(\hept{\begin{cases}2a-b=11\\3a-b=21\end{cases}\Rightarrow\hept{\begin{cases}a=10\\b=9\end{cases}\Rightarrow}\hept{\begin{cases}c=8\\d=7\end{cases}}}\)

Vậy đa thức cần tìm là \(f\left(x\right)=x^5+10x^4+9x^3+8x^2+7x-2010\)

30 tháng 6 2015

 a)  R=\(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)

   \(R=\left(\frac{\sqrt{x}\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

  \(R=\left(\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(R=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{1}{\sqrt{x}-2}\right)\)

\(R=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}-2}\right)\)

\(R=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

30 tháng 6 2015

c

\(\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\)

\(co:x>o\inĐKXĐ\leftrightarrow\sqrt{x}>0\leftrightarrow\sqrt{x}+2>0\)với mọi x thuộc ĐKXĐ

\(\rightarrow\)Tử thức luôn dương với mọi x thuộc ĐKXĐ

Xét mẫu thức ta có  :

 \(\sqrt{x}-2>0\) (vì \(\sqrt{x}>0\) với mọi x thuộc ĐKXĐ)

\(\leftrightarrow\sqrt{x}=2\)\(\leftrightarrow x>4\)(tm đkxđ)

Vậy..............

 

6 tháng 10 2015

Câu này bạn làm tương tự như câu trên nha

tick cho mình nha

10 tháng 8 2017

\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

b/ Để R<-1   => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)

<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)

<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)

10 tháng 8 2017

Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)   là sao vậy ạ?

12 tháng 7 2017

ĐK  \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)

b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)

\(\Rightarrow0\le x< \frac{9}{4}\)

c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)

Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)

Vậy \(MinR=-3\Leftrightarrow x=0\)