K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1) a) Xác định P(x) b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1) Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x). Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4) Bài...
Đọc tiếp

Bài 1: Cho đa thức bậc 4 thỏa mãn: P(-1) = 0 và P(x) – P(x – 1) = x(x+1)(2x+1)
a) Xác định P(x)
b) Suy ra giá trị của tổng: S = 1.2.3 + 2.3.5 +…+ n(n+1)(2n+1)

Bài 2: Xác định a và b sao cho đa thức \(P\left(x\right)=ax^4+bx^3+1\) chia hết cho đa thức Q(x) = (x -1)2 . Với a, b vừa tìm được, xác định các nghiệm của P(x).

Bài 3: Xác định phần dư R(x) của phép chia: \(P\left(x\right)=1+x+x^9+x^{25}+x^{49}+x^{81}\) cho \(x^3-x\). Tính R(701,4)

Bài 4: Cho f(1) =1; f (m+n) = f(m) +f(n) +mn ( với m,n nguyên dương)
a) CM: f(k) – f(k-1) =k
b) Tính f(10); f(2007); f(2008)

Bài 5: Cho a+b+c=0 và ab + bc + ac =0. Tính giá trị biểu thức: \(M=\left(a-2005\right)^{2006}-\left(b-2005\right)^{2006}-\left(c+2005\right)^{2006}\)

Bài 6: Cho \(a>b>0\) thỏa mãn \(3a^2+3b^2=10ab\). Tính giá trị biểu thức: \(P=\dfrac{a-b}{a+b}\)

Mình biết lần này thực sự mình hỏi nhiều nhưng vẫn mong các bạn giúp đỡ, mình sẽ tick cho bạn nào trả lời được trước 16/8/2017 nhé, 1 bài thôi cũng tick, cảm ơn các bạn nhiều, giúp mình nhé !!! vui

5
15 tháng 8 2017

\(P^2=\dfrac{\left(a-b\right)^2}{\left(a+b\right)^2}=\dfrac{a^2-2ab+b^2}{a^2+2ab+b^2}=\dfrac{3a^2+3b^2-6ab}{3a^2+3b^2+6ab}=\dfrac{4ab}{16ab}=\dfrac{1}{4}\Rightarrow P=\dfrac{1}{2}\)

15 tháng 8 2017

\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)\(ab+bc+ac=0\Rightarrow a^2+b^2+c^2=0\Rightarrow a=b=c=0\)

Vậy \(M=-2005^{2006}\)

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

17 tháng 4 2016

a2+b2=a3+b3=1 

suy ra a = 1 hoặc b = 1

suy ra a4+b4cũng =1

17 tháng 4 2016

bạn sai rồi kìa: nếu a=1;b=1 thì a2+b2=a3+b3 <=> 1+1=1+1=2.mà đề ra là bằng 1 mà..bạn xem lại thử nhé

17 tháng 7 2016

Bài 1:

 Ta có: xy ≤ (x + y)²/4 = 1/4, dấu = xảy ra khi x = y = 1/2 
P = (x² + 1/y²)(y² + 1/x²) = (xy)² + 1 + 1 + 1/(xy)² 
= (xy)² + 1/[256(xy)²] + 255/[256(xy)²] + 2 
ta có: 
(xy)² + 1/[256(xy)²] ≥ 2 √(1/256) = 1/8. dấu = xảy ra khi x = y = 1/2 
255/[256(xy)²] + 2 ≥ 255/(256.1/16) + 2 = 287/16. dấu = xảy ra khi x = y = 1/2 
cộng theo vế → P ≥ 1/8 + 287/16 = 289/16 
vậy GTNN của P là 289/16, đạt được khi x = y = 1/2

27 tháng 1 2022

a) Ta có f(x) - 5 \(⋮\)x + 1 

=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1

=> x3 + mx2 + nx  - 3 \(⋮\)x + 1

=> x = - 1 là nghiệm đa thức 

Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0

<=> m - n = 4 (1) 

Tương tự ta được f(x) - 8 \(⋮\)x + 2 

=> x3 + mx2 + nx - 6 \(⋮\) x + 2

=> x = -2 là nghiệm đa thức

=> (-2)3 + m(-2)2 + n(-2) - 6 = 0

<=> 2m - n = 7 (2) 

Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)

Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2  

27 tháng 1 2022

b)  f(x) - 7 \(⋮\)x + 1

=> x3 + mx + n - 7 \(⋮\) x + 1 

=> x = -1 là nghiệm đa thức 

=> (-1)3 + m(-1) + n - 7 = 0

<=> -m + n = 8 (1) 

Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3 

=> x = 3 là nghiệm đa thức 

=> 33 + 3m + n + 5 = 0

<=> 3m + n = -32 (2) 

Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)

Vậy f(x) = x3 - 10x -2