Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{2{\rm{x}}.2{\rm{x}}y}}{{3y.2{\rm{x}}y}}\)
Nhân tử chung của cả tử và mẫu là: 2xy
b) Chia cả tử và mẫu của phân thức đã cho cho nhân tử chung 2xy ta được:
\(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{\left( {4{{\rm{x}}^2}y} \right):2{\rm{x}}y}}{{\left( {6{\rm{x}}{y^2}} \right):2{\rm{x}}y}} = \dfrac{{2{\rm{x}}}}{{3y}}\)
Ta có phân thức mới là
Ta có
= (2x)/(x + 2)
vì 2x( x - 1 ).( x + 2 ) = 2x.( x + 2 )( x - 1 ).
Nhân cả tử và mẫu với đa thức ( x + 1 ) ta được phân thức mới là
Ta có (áp dụng hằng đẳng thức A 2 - B 2 = ( A - B ) ( A + B ) )
Chọn đáp án C.
x.(x + 2) = x2 + 2x
3.(x +2) = 3x + 6
⇒ x(3x + 6) = 3(x2 + 2x) = 3x2 + 6x
Ta có: \(\frac{1}{{2{{\rm{x}}^2} + 2{\rm{x}}}} = \frac{1}{{2{\rm{x}}\left( {x + 1} \right)}}\)
\(\frac{1}{{3{{\rm{x}}^2} - 6{\rm{x}}}} = \frac{1}{{3{\rm{x}}\left( {x - 2} \right)}}\)
Chia cả tử và mẫu của phân thức này cho nhân tử chung x−1, ta có \(\frac{{x + 1}}{{{x^2} + x + 1}}\)
=> Phân thức mới được rút gọn và mất đi nhân tử chung x−1
a) Ta có:
\(\frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{27{{\rm{x}}^3} - 1}} = \frac{{9{{\rm{x}}^2} + 3{\rm{x}} + 1}}{{\left( {3{\rm{x}} - 1} \right)\left( {9{{\rm{x}}^2} + 3{\rm{x}} + 1} \right)}} = \frac{1}{{3{\rm{x}} - 1}}\)
\(\frac{{{x^2} - 4{\rm{x}}}}{{16 - {x^2}}} = \frac{{x\left( {x - 4} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x\left( {4 - x} \right)}}{{\left( {4 - x} \right)\left( {4 + x} \right)}} = \frac{{ - x}}{{4 + x}}\)
b) Mẫu thức chung của hai phân thức nhân được ở câu a là: \(\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)\)
Nhân tử phụ của \(\frac{1}{{3{\rm{x}} - 1}}\) là: \(4 + x\)
Nhân tử phụ của \(\frac{{ - x}}{{4 + x}}\) là : \(3{\rm{x}} - 1\)
Khi đó:
\(\frac{1}{{3{\rm{x}} - 1}} = \frac{{4 + x}}{{\left( {3{\rm{x}} - 1} \right)\left( {4 + x} \right)}}\)
\(\frac{{ - x}}{{4 + x}} = \frac{{ - x\left( {3{\rm{x}} - 1} \right)}}{{\left( {4 + x} \right)\left( {3{\rm{x}} - 1} \right)}}\)
Ta có: \(\frac{{2{{\rm{x}}^2} + 2{\rm{x}}}}{{{x^2} - 1}} = \frac{{2{\rm{x}}\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \frac{{2{\rm{x}}}}{{x + 1}}\)