K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

4>=2(x^2+y^2)

4>=2x^2+2y^2

mà x^2+y^2>=2xy

4>=x^2+2xy+y^2

4>=(x+y)^2 

suy ra đpcm

28 tháng 4 2017

theo C-S , (x^2+y^2)(1^2+1^2) >/ (x+y)^2 => x^2+y^2 >/ (x+y)^2/2 

=>(x+y)^2/2 </ x^2+y^2 </ 2 => (x+y)^2 </ 4 => -2 </x+y<2

7 tháng 5 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho bộ ba số thực không âm gồm có \(x;\)  \(x;\)  \(2y\), khi đó, ta có:

\(x+x+2y\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)   \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(6\ge3\sqrt[3]{2x^2y}\)

\(\Leftrightarrow\)  \(2\ge\sqrt[3]{2x^2y}\)  \(\Leftrightarrow\)  \(2^3\ge2x^2y\)  \(\Leftrightarrow\)  \(8\ge2x^2y\)  \(\Leftrightarrow\)  \(x^2y\le\frac{8}{2}=4\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(^{x=2y}_{x+y=3}\)  \(\Leftrightarrow\)  \(^{x=2}_{y=1}\)

7 tháng 5 2016

bất đẳng thức này mình chưa học ạ. Đây là đề thi lớp 8. Nếu bạn có cách giải khác thì giải dùm mình. Tks 

6 tháng 6 2018

a) Mình làm lại , mk thiếu dấu

Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)

Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

x + y + z ≥ xy + yz + zx

⇔ x + y + z - xy - yz - xz ≥ 0 ( *)

Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)

Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)

Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :

( x - 1)( y - 1)( z - 1) ≤ 0

⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0

⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)

Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)

Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)

Từ ( * ; **) ⇒ đpcm

6 tháng 6 2018

j mà lắm bài thế :D

DD
26 tháng 7 2021

Ta có: 

\(x^2+12y^2-4xy+2x-28y+19\)

\(=x^2+4y^2+1-4xy+2x-4y+8y^2-24y+18\)

\(=\left(x-2y+1\right)^2+2\left(2y-3\right)^2\le0\)

\(\Leftrightarrow\hept{\begin{cases}x-2y+1=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{3}{2}\end{cases}}\)