Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức \(AM-GM\) cho bộ ba số thực không âm gồm có \(x;\) \(x;\) \(2y\), khi đó, ta có:
\(x+x+2y\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\left(x+y\right)\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(6\ge3\sqrt[3]{2x^2y}\)
\(\Leftrightarrow\) \(2\ge\sqrt[3]{2x^2y}\) \(\Leftrightarrow\) \(2^3\ge2x^2y\) \(\Leftrightarrow\) \(8\ge2x^2y\) \(\Leftrightarrow\) \(x^2y\le\frac{8}{2}=4\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(^{x=2y}_{x+y=3}\) \(\Leftrightarrow\) \(^{x=2}_{y=1}\)
a) Mình làm lại , mk thiếu dấu
Ta có : y ≤ 1 ⇒ x ≥ xy ( x > 0) ( 1)
Tương tự : y ≥ yz ( y > 0) ( 2) ; z ≥ xz ( z > 0) ( 3)
Cộng từng vế của ( 1 ; 2 ; 3) , ta có :
x + y + z ≥ xy + yz + zx
⇔ x + y + z - xy - yz - xz ≥ 0 ( *)
Lại có : x ≤ 1 ⇒ x - 1 ≤ 0 ( 4)
Tương tự : y - 1 ≤ 0 ( 5) ; z - 1≤ 0 ( 6)
Nhân vế với vế của ( 4 ; 5 ; 6) , ta có :
( x - 1)( y - 1)( z - 1) ≤ 0
⇔ x + y + z - xy - yz - zx + xyz - 1 ≤ 0
⇔ x + y + z - xy - yz - zx ≤ 1 - xyz ( 7)
Do : 0 ≤ x , y , z ≤ 1 ⇒ 0 ≤ xyz ⇒ - xyz ≤ 0 ⇒ 1 - xyz ≤ 1 ( 8)
Từ ( 7;8 ) ⇒ x + y + z - xy - yz - zx ≤ 1 ( **)
Từ ( * ; **) ⇒ đpcm
Ta có:
\(x^2+12y^2-4xy+2x-28y+19\)
\(=x^2+4y^2+1-4xy+2x-4y+8y^2-24y+18\)
\(=\left(x-2y+1\right)^2+2\left(2y-3\right)^2\le0\)
\(\Leftrightarrow\hept{\begin{cases}x-2y+1=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\frac{3}{2}\end{cases}}\)
4>=2(x^2+y^2)
4>=2x^2+2y^2
mà x^2+y^2>=2xy
4>=x^2+2xy+y^2
4>=(x+y)^2
suy ra đpcm
theo C-S , (x^2+y^2)(1^2+1^2) >/ (x+y)^2 => x^2+y^2 >/ (x+y)^2/2
=>(x+y)^2/2 </ x^2+y^2 </ 2 => (x+y)^2 </ 4 => -2 </x+y<2