Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
DO đó: ABEC là hình bình hành
b: OA=AC/2=5(cm)
a: Xét tứ giác ABEC có
M là trung điểm của AE
M là trung điểm của BC
Do đó: ABEC là hình bình hành
b: OA=5cm
Hình bạn tự vẽ nha
a) CMR Tứ giác ABEC là hình bình hành
Vì ABCD là hcn (gt) => AB=CD và AB//CD (t/c hcn)
=> AB=CE và AB//CE ( CE= DC, E \(\in\) CD)
=> tứ giác ABEC là hình bình hành(dhnb)
b) BOCF là hình gì
Vì ABEC là hbh (cmt) => AC=BE và AB//BE 9T/c hbh)
=> 1/2 AC=1/2BE và OC//BF (1)
<=> OC= BF(2)
Từ (1) và (2) => BOCF là hbh (dhnb)
mà OB=OC (t/c đừng chéo hcn)
=> BOCF là hình thoi (dhnb)
c) DOFE là hình thang cân
Vì AC= BE ( ABEC là hbh)
mà AC =BD ( T/c hcn)
=> BE= BD => Tam giác BED cân tại B (đ/n)
=> BDE= BED (t/c tam giác cân) (1)
Vì C là trung điểm DE ( D đx E qua C) => BC là đường trung tuyến của tam giác ABC cân => BC là đương cao ( t/c các đường trong tam giác cân) => BC _l_ DE
mà BC_l_ OF (đg chéo hình thoi)
=> DE//OF ( từ _l_ -> //) (2)
Từ (1) và (2)=> OFDE là hình thang cân (dhnb hthang cân)
Quá nhiều cách để chứng minh.
a. CE //BD
BE // DC ( vì DC // AB )
=> DCEB là hình bình hành
=> CE = BD
Mà BD =AC ( vì ABCD là hv)
=> CE = AC (1)
BD vuông AC ( vì ABCD là hình vuông )
mà CE // BD
=> CE vuông AC (2)
Từ (1); (2) => Tam giác ACE là tam giác vuông cân.
b) F đối xứng với AB qua O
=> AB là đường trung trực của OF
=> BF = BO và AO = AF
Mà OA = OB ( ABCD là hình bình hành vs O là giao 2 đường chéo )
=> BF = BO = AO = AF.
=> AOBF là hình thoi
Mặt khác ^AOB = 90^o
=> AOBF là hình vuông
c. APCQ là hình thoi
=>đường thẳng PQ là đường trung trực của đoạn AC (3)
Mặt khác ABCD là hình vuông => đường thẳng BD là đường trung trực của đoạn AC(4)
Từ (3); (4) => Đường thẳng PQ trùng đường thẳng BD => P; D; B; Q thẳng hàng.
a: Xét tứ giác BCEQ có
H là trung điểm của BE
H là trung điểm của CQ
Do đó: BCEQ là hình bình hành