Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html
ý a dễ
b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90
Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)
=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn
c/
Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)
số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)
số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)
Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC
@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.
Câu 14:
Áp dụng hệ thức lượng trong tam giác vuông:
$AH^2=BH.CH$
$BH=\frac{AH^2}{CH}=\frac{10^2}{5}=20$
$BC=BH+CH=20+5=25$ (cm)
Câu 15:
Áp dụng hệ thức lượng trong tam giác vuông:
$\sin C=\frac{AB}{BC}=\frac{8}{10}=\frac{4}{5}$
$\Rightarrow \widehat{C}=53,13^0$
15. Gọi chiều dài là x, chiều rộng là y (x, y > 0).
- 2 lần chiều dài bằng 3 lần chiều rộng \(\Rightarrow2x=3y\left(1\right)\)
- Nửa chu vi bằng 20 (cm) \(\Rightarrow x+y=20\left(2\right)\)
Từ (1) và (2), ta có hệ phương trình : \(\left\{{}\begin{matrix}2x=3y\\x+y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\\dfrac{3y}{2}+y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3y}{2}\\3y+2y=40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3.8}{2}\\y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\left(tmđk\right)\\y=8\left(tmđk\right)\end{matrix}\right.\)
Vậy : ...
trong \(\Delta ABC\) vuông tại A
AB=AC.tanC=10.tan30=5,77
CB=\(\sqrt{AC^2+AB^2}=\sqrt{10^2+5,77^2}=11,55\)
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{5,77.10}{11,55}=5\)
\(\widehat{B}=90-\widehat{C}=90-30=60\)