Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $AH:AC=3:5$ nên đặt $AH=3a; AC=5a$ với $a>0$
Ta có: $AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}$
$AH^2=\frac{AB^2AC^2}{BC^2}=\frac{AB^2.AC^2}{AB^2+AC^2}$
$(3a)^2=\frac{15^2.(5a)^2}{15^2+(5a)^2}$
$\Leftrightarrow 9a^2=\frac{225a^2}{a^2+9}$
$\Leftrightarrow 9=\frac{225}{a^2+9}$
$\Leftrightarrow 9(a^2+9)=225$
$\Rightarrow a=4$ (cm)
$AH=3a=12$ (cm); $AC=5a=20$ (cm)
Áp dụng định lý Pitago:
$HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)
$HB=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)
b.
Vì $AEHF$ có 3 góc vuông $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên đây là hình chữ nhật
$\Rightarrow EF=AH$
Do đó: $EF.BC=AH.BC=2S_{ABC}=AB.AC$ (đpcm)
b: \(N=a^3-3a^2-a\left(3-a\right)\)
\(=a^2\left(a-3\right)+a\left(a-3\right)\)
\(=a\left(a-3\right)\left(a+1\right)\)
Câu 3:
a: \(\left(x+2\right)^2=x^2+4x+4\)
b: \(\left(x+3\right)^2=x^2+6x+9\)
c: \(\left(x-3\right)^2=x^2-6x+9\)
d: \(\left(x-7\right)^2=x^2-14x+49\)
e: \(x^2-6x+9=\left(x-3\right)^2\)
f: \(x^2-8x+16=\left(x-4\right)^2\)
g: \(=\left(x-10\right)\left(x+10\right)\)
h: \(=\left(x-11\right)\left(x+11\right)\)
\(M=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(M\ge\left|x-1+3-x\right|=\left|2\right|=2\)
Dấu " = " xảy ra khi \(x-1\ge0;3-x\ge0\)
\(\Rightarrow x\ge1;x\le3\)
\(\Rightarrow1\le x\le3\)
Vậy \(MIN_M=2\) khi \(1\le x\le3\)
Bài 2:
a: =>168x+20=6x-21
=>162x=-41
hay x=-41/162
b: \(\Leftrightarrow2\left(3x-8\right)=3\left(5-x\right)\)
=>6x-16=15-3x
=>9x=31
hay x=31/9
c: \(\Leftrightarrow4\left(x^2+8x-20\right)-\left(x+4\right)\left(x+10\right)=3\left(x^2+2x-8\right)\)
\(\Leftrightarrow4x^2+32x-80-x^2-14x-40-3x^2-6x+24=0\)
=>12x-96=0
hay x=8
lạc chủ đề rồi chế, đây là toán mà!!!
ha ha z trả lời giùm mình đi