K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

Áp dụng 1/x + 1/y >= 4/(x+y) với x,y>0(đề có thiếu ko nhỉ)

Dấu "=" xảy ra khi x=y 

24 tháng 1 2017

ta co 10=x+y>=2can xy

100=(x+y)2>=4xy

100/xy>=4

10/xy>=4/10

1:x+1:y>=2/5

31 tháng 12 2016

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(A=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x^2+y^2=20\\x^2=y^2\end{matrix}\right.\)\(\Rightarrow x=y=\pm\sqrt{10}\)

Vậy \(Min_A=\frac{1}{5}\) khi \(x=y=\pm\sqrt{10}\)

19 tháng 7 2017

Ta có: A=x3+y3+xy = (x+y)(x2-xy+y2)+xy

=> A=(x+y)(x2+2xy+y2-3xy)+xy

<=> A=(x+y)[(x+y)2-3xy]+xy=1.(12-3xy)+xy

=> A=1-2xy

Lại có:\(x+y\ge2\sqrt{xy}\)

=> \(\left(x+y\right)^2\ge4xy\)=> \(xy\le\frac{1}{4}\)

=> A=1-2xy\(\ge1-\frac{2.1}{4}\)

=> \(A\ge\frac{1}{2}\)

=> GTNN của A là 1/2

19 tháng 7 2017

\(A=x^3+y^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2-xy+y^2+xy=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiacopxki ta có : 

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)

\(\Rightarrow A=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Dấu ''='' xảy ra <=> \(x=y=\frac{1}{2}\)

Vậy AMin = \(\frac{1}{2}\) tại \(x=y=\frac{1}{2}\)

13 tháng 1 2017

\(B=\left(x+y\right)^3-3xy.\left(x+y\right)+xy\)

\(x+y=1\) nên \(B=1-2xy\)

\(xy\Leftarrow\left(x+y\right)^{\frac{2}{4}}=\frac{1}{4}\)

\(\Rightarrow B>1-\frac{1}{2}=\frac{1}{2}\)

GTNN của \(B\)\(\frac{1}{2}\)

23 tháng 12 2016

\(\hept{\begin{cases}x+y=1\\x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)\end{cases}\Rightarrow A=1-xy}\)

\(x+y=1\Rightarrow\left(x+y\right)^2=1\Rightarrow\left(x-y\right)^2=1-4xy\)

\(\left(x-y\right)^2\ge0\Rightarrow xy\le\frac{1}{4}\)

GTNN A=1-1/4=3/4 khi xy=1/4 

23 tháng 12 2016

cảm ơn nhé

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)