K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Ta dễ dàng chứng minh:
\(0< a,b,c\le\frac{3}{2}\)
Áp dụng BDT cô si cho ba số dương ta có:
\(\left(\frac{3}{2}-a\right)+\left(\frac{3}{2}-b\right)+\left(\frac{3}{2}-c\right)\ge3\sqrt[3]{\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^3\ge\frac{3}{2}-a)(\frac{3}{2}-b)(\frac{3}{2}-c)\)

\(\Leftrightarrow\frac{1}{8}\ge\frac{27}{8}-\frac{9}{4}\left(a+b+c\right)+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow\frac{1}{8}\ge-\frac{27}{8}+\frac{3}{2}\left(ab+bc+ac\right)-abc\)

\(\Leftrightarrow4abc\ge-14+6\left(ab+bc+ac\right)\)

\(\Leftrightarrow3a^2+3b^2+3c^2+4abc\ge13\)

21 tháng 10 2016

Với các bài toán tìm max, min 2 biến kiểu như thế này, em hay cố gắng nhân M lên n lần để tạo thêm được các số hạng, sang đó ghép tạo thành các bình phương.

Cách làm như sau:

\(4M=4a^2+4ab+4b^2-12a-12b+8004\)

\(=\left(4a^2+4ab+b^2\right)-6\left(2a+b\right)+3\left(b^2-2b\right)+8004\)

\(=\left(2a+b\right)^2-6\left(2a+b\right)+9+3\left(b^2-2b+1\right)+7992\)

\(=\left(2a+b-3\right)^2+3\left(b-1\right)^2+7992\ge7992\)

Vậy 4M min = 7992, vây M min = 1998.

Vậy min M = 1998 khi \(\hept{\begin{cases}b-1=0\\2a+b-3=0\end{cases}}\Rightarrow\hept{\begin{cases}b=1\\a=1\end{cases}}\)

25 tháng 10 2016

GTNN = -10

cách làm

M = ...

= 2(a2+b2)+a2+b2+c2

= 2(a2+b2)+(a+b+c)2-2(ab+bc+ac) (1)

mà ab+bc+ac=5

=> (1) = 2(a2+b2)+(a+b+c)2-10

có a2 và b2 \(\ge\) 0

2 >0

(a+b+c)2 \(\ge\) 0

=> (1) \(\ge\) -10

=> M min = -10

hơi sơ sài nhỉ, ko hiểu thì hỏi, tôi chỉ cho

25 tháng 10 2016

mình cảm ơn nha

 

27 tháng 2 2021

cháu tôi học ghê thế :))

a) 3x3 - 7x2 + 17x - 5

= 3x3 - x2 - 6x2 + 2x + 15x - 5

= x2( 3x - 1 ) - 2x( 3x - 1 ) + 5( 3x - 1 )

= ( 3x - 1 )( x2 - 2x + 5 )

b) Đặt A = a2 + ab + b2 - 3a - 3b + 3

=> 4A = 4a2 + 4ab + 4b2 - 12a - 12b + 12

= ( 4a2 + 4ab + b2 - 12a - 6b + 9 ) + ( 3b2 - 6b + 3 )

= ( 2a + b - 3 )2 + 3( b - 1 )2 ≥ 0 ∀ a, b

hay 4A ≥ 0 => A ≥ 0

Dấu "=" xảy ra <=> a = b = 1

NM
27 tháng 2 2021

a.

\(3x^3-7x^2+17x-5=3x^3-x^2-6x^2+2x+15x-5\)

\(=\left(3x-1\right)\left[x^2-2x+5\right]\)

b.\(a^2+ab+b^2-3a-3b+3=\left(a-1\right)^2+\left(b-1\right)^2+\left(a-1\right)\left(b-1\right)\)

\(=\left[a-1+\frac{b-1}{2}\right]^2+\frac{3}{4}\left(b-1\right)^2\ge0\)

dấu bằng xảy ra khi \(a-1=b-1=0\Leftrightarrow a=b=1\)

7 tháng 12 2020

câu a dùng biến đổi tương đương là được

7 tháng 4 2016

a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^

b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^

13 tháng 11 2019

a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath

7 tháng 1 2018

a, 2A = 4x^2+6y^2+8xy-16x-4x+36

= [(4x^2+8xy+4y^2)-2.(2x+2y).4+16] + (2y^2+12y+18) + 2

= [(2x+2y)^2-2.(2x+2y).4+16]+2.(y^2+6x+9)+2

= (2x+2y-4)^2+2.(y+3)^2+4 >= 2 => A > = 1

Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 ; y=-3

Vậy GTNN của A = 1 <=> x=5 ; y=-3

Tk mk nha

7 tháng 1 2018

Đã bảo bao nhiêu lần là vô công thức toán học mà gõ mà chẳng chịu làm theo làm tôi đọc đau hết cả mắt mà chả hiểu gì 

-_- hại mắt người ta

Tìm GTNH: P=x^2+xy+y^2-3x-3y+2010? - Yahoo Hỏi & Đáp

https://vn.answers.yahoo.com/question/index?qid=20100903224130AAhmqxW