K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2021

Chọn 4 trong 15 bạn là tổ hợp chập 4 của 15 nên ta có:

\(C^4_{15}=1365\) cách chọn 

3 tháng 12 2021

1365

11 tháng 5 2016

Đầu tiên ta chọn 4 nam, 1 nữ cho tỉnh thứ nhất. Theo quy tắc nhân số cách chọn là

\(n_1\) = \(C_{12}^4\).\(C_3^1\) = 1485

Sau đó chọn 4 nam và 1 nữ cho tỉnh thứ hai, 4 nam sẽ được chọn trong 8 nam còn lại, 1 nữ sẽ chọn trong 2 nữ còn lại. Vậy theo quy tắc nhân số cách chọn là

\(n_2\) = \(C_8^4\).\(C_2^1\) = 140

Còn lại ta chọn cho tỉnh thứ ba

Lại theo quy tắc nhân, số cách phân công là

n=\(n_1\).\(n_2\) = 1485 x 140 = 207900.

5 tháng 3 2019

Bước 1: Chọn 4 nam và 1 nữ về tỉnh thứ nhất, có  cách.

Bước 2: Chọn 4 nam từ 8 nam còn lại, 1 nữ từ 2 nữ còn lại về tỉnh thứ hai, có   cách.

Bước 3: Phân công 4 nam còn lại và 1 nữ còn lại về tỉnh thứ 3, có 1 cách.

Vậy theo quy tắc nhân, số cách phân công sẽ là:   = 207900.

Chọn A.

10 tháng 11 2017

Có C31 .C124 cách phân công thanh niên về tỉnh thứ nhất. Với mỗi cách này thì có C21 .C84 cách phân công số thanh niên còn lại về tỉnh thứ hai. Với mỗi cách phân công về hai tỉnh trên thì có C11 .C44 cách phân công về tỉnh thứ ba.

Do đó có C31 .C124 .C21 .C84 . C11 .C44 =207900 cách

Chọn C

21 tháng 12 2018

Có C 12 4  cách phân công 4 nam về tỉnh thứ nhất

Với mỗi cách phân công trên thì có  C 8 4  cách phân công 4 nam về tỉnh thứ hai và có  C 4 4  cách phân công 4 nam còn lại về tỉnh thứ ba.

 

Khi phân công nam xong thì có 3! cách phân công ba nữ về ba tỉnh đó.

Vậy có tất cả C 12 4 . C 8 4 . C 4 4 . 3 ! = 4989600  cách phân công.

Chọn đáp án C.

23 tháng 7 2017

Ta đếm số cách chọn 4 học sinh từ đội xung kích mà thuộc cả 3 lớp ở trên.

Phương án 1: Chọn 2 học sinh lớp A, 1 học sinh lớp B và 1 học sinh lớp C.

Số cách chọn trong trường hợp này là .

Phương án 2: Chọn 1 học sinh lớp A, 2 học sinh lớp B và 1 học sinh lớp C.

Số cách chọn trong trường hợp này là  .

Phương án 3: Chọn 1 học sinh lớp A, 1 học sinh lớp B và 2 học sinh lớp C.

Số cách chọn trong trường hợp này là .

Theo quy tắc cộng thì số cách chọn 4 học sinh thuộc đủ cả ba lớp là 120 + 90 + 60 = 270.

Trong khi số cách chọn 4 học sinh bất kỳ từ đội xung kích là .

Vậy số cách chọn 4 học sinh mà các học sinh không thuộc quá hai lớp là 495 -270 =225.

Chọn C.

10 tháng 10 2017

Đáp án A

21 tháng 4 2018


16 tháng 5 2016

Gọi A là tập hợp mọi cách chọn 4 học sinh trong 12 học sinh

Gọi B là tập hợp cách chọn không thỏa mãn yêu cầu đề bài (tức là chọn đủ học sinh 3 lớp)

Gọi C là tập hợp cách chọn thỏa mãn yêu cầu đề bài

Ta có      A = B\(\cup\) C, B \(\cap\) C = \(\varnothing\)

Theo quy tắc cộng ta có

\(\left|A\right|\) = \(\left|B\right|\) + \(\left|C\right|\) \(\Rightarrow\) \(\left|C\right|\) = \(\left|A\right|\) - \(\left|B\right|\)               (1)

Dễ thấy \(\left|A\right|\) = \(C_{12}^4\) = 495

Để tính \(\left|B\right|\), ta nhận thấy sẽ chọn một lớp có 2 học sinh, còn 2 lớp còn lại mỗi lớp 1 học sinh. Vì thế theo quy tắc cộng và phép nhân, ta có:

\(\left|B\right|\) = \(C_5^2\)\(C_4^1\)\(C_3^1\) + \(C_5^1\)\(C_4^2\)\(C_3^1\) + \(C_5^1\)\(C_4^1\)\(C_3^2\) = 120 + 90 + 60 = 270

Thay vào (1) ta có \(\left|C\right|\) = 495 - 270 = 225

Vậy có 225 cách chọn.

16 tháng 5 2016

Số cách chọn 4 học sinh từ 12 học sinh đã cho là : C412=495C124=495

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một em được tính như sau :

* Lớp AA có 2 học sinh, các lớp BBCC mỗi lớp 1 học sinh.

 Số cách chọn là : C25.C14.C13=120C52.C41.C31=120

* Lớp BB có 2 học sinh, các lớp AACC mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C24.C13=90C51.C42.C31=90
Lớp CC có 2 học sinh, các lớp AABB mỗi lớp 1 học sinh.

 Số cách chọn là : C15.C14.C23=60C51.C41.C32=60

Số cách chọn 4 học sinh mà mỗi lớp có ít nhất một học sinh là :

120+90+60=270120+90+60=270

Vậy số cách chọn phải tìm là : 495270=225495−270=225 cách.