Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
AH=15*20/25=12cm
b: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
=>tan ADH=tan ABD=tan ABC=AC/AB=4/3
Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC=HD*HC
a, muộn rồi nên mk làm qua loa nha!
Dễ cm được AKHI là hình chữ nhật \(\Rightarrow AH=IK\)
Áp dụng hệ thức lượng cho \(\Delta ABC\) \(\Rightarrow IK^2=AH^2=BH.HC\)
b, \(Sin^2B=\left(\dfrac{AC}{BC}\right)^2\) \(=\dfrac{AC^2}{BC^2}\) (1)
theo hệ thức lượng: \(AC^2=HC.BC\)
Thay vào (1)\(\Rightarrow Sin^2B=\dfrac{HC.BC}{BC^2}=\dfrac{HC}{BC}\)
a: \(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: \(HD=\dfrac{9^2}{12}=\dfrac{81}{12}=\dfrac{27}{4}\left(cm\right)\)
a) + ΔADH vuông cân tại H
\(\Rightarrow\widehat{ADH}=45^o\Rightarrow\widehat{ADC}=135^o\)
+ ΔABC ∼ ΔDEC ( g.g )
\(\Rightarrow\frac{CD}{AC}=\frac{CE}{BC}\)
+ ΔACD ∼ ΔBCE ( c.g.c )
\(\Rightarrow\widehat{BEC}=\widehat{ADC}=135^o\Rightarrow\widehat{AEB}=45^o\)
=> ΔABE vuông cân tại A
b) Sửa đề : \(\frac{GB}{BC}=\frac{DH}{AH+CH}\)
+ ΔABC ∼ ΔHAC ( g.g )
\(\Rightarrow\frac{AB}{AC}=\frac{HA}{HC}\)
+ ΔABE cân tại A, đg trung tuyến AM
=> AM là đg phân giác của ΔABE
+ ΔABC, đg phân giác AG
\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\Rightarrow\frac{GB}{GC}=\frac{HA}{HC}\)
\(\Rightarrow\frac{GB}{GB+GC}=\frac{HA}{HA+HC}\Rightarrow\frac{GB}{BC}=\frac{HD}{AH+HC}\)