Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có FD song song với AE(cùng vuông góc với AB)
=>Góc BDC = Góc DCE (đồng vị)(1)
Từ(1) và góc BFD = Góc DEC = 90 độ
=> ĐPCM Câu a
b,Có E TĐ AC ; f trung điểm AB
\(\Rightarrow\frac{AE}{AC}=\frac{ÀF}{AB}=\frac{1}{2};\widehat{A}chung\)
=>Tam giác AEF đồng dạng ACB => ĐPCM (câu b)
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
a: ΔABC vuông tại A
mà AD là đường trung tuyến
nên DA=DB=DC
ΔDAB có DA=DB
nên ΔDAB cân tại D
=>\(\widehat{DAB}=\widehat{DBA}\)
mà \(\widehat{DAB}+\widehat{DFA}=90^0\)(ΔDAF vuông tại D)
và \(\widehat{DBA}+\widehat{DCA}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{DFA}=\widehat{DCA}\)
Xét ΔAEF vuông tại A và ΔABC vuông tại A có
\(\widehat{AFE}=\widehat{ACB}\)
Do đó: ΔAEF~ΔABC
b: Xét ΔDBF và ΔDEC có
\(\widehat{DFB}=\widehat{DCE}\)
\(\widehat{BDF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó ΔDBF~ΔDEC
=>\(\dfrac{DB}{DE}=\dfrac{DF}{DC}\)
=>\(DB\cdot DC=DE\cdot DF\)
=>\(DC^2=DE\cdot DF\)
=))