K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có 

M là trung điểm của AB

MN//BC

Do đó: N là trung điểm của AC

=>AN=NC=7cm

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

a) Xét ΔABC có 

MN//BC(gt)

Do đó: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\)(Định lí Ta lét)

Suy ra: \(\dfrac{6}{4}=\dfrac{8}{NC}\)

hay \(NC=\dfrac{16}{3}cm\)

Ta có: AM+MB=AB(M nằm giữa A và B)

nên AB=6+4=10(cm)

Ta có: AN+NC=AC(N nằm giữa A và C)

nên \(AC=8+\dfrac{16}{3}=\dfrac{40}{3}cm\)

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{40}{3}\right)^2=\dfrac{2500}{9}\)

hay \(BC=\dfrac{50}{3}cm\)

Xét ΔABC có 

MN//BC(gt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AB}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{\dfrac{50}{3}}=\dfrac{6}{10}\)

\(\Leftrightarrow MN=\dfrac{6\cdot\dfrac{50}{3}}{10}=\dfrac{100}{10}=10cm\)

Vậy: MN=10cm; \(NC=\dfrac{16}{3}cm\)\(BC=\dfrac{50}{3}cm\)

1: Xét ΔAEN có 

D là trung điểm của AE

DM//EN

Do đó: M là trung điểm của AN

2: Xét hình thang BDMC có 

E là trung điểm của BD

EN//BC//DM

Do đó: N là trung điểm của MC

Suy ra: NM=NC

mà NM=AM

nên AM=MN=NC

3: Xét hình thang DMCB có 

E là trung điểm của BD

N là trung điểm của MC
Do đó: EN là đường trung bình của hình thang DMCB

Suy ra: \(EN=\dfrac{DM+BC}{2}\)

hay \(DM+BC=2\cdot EN\)

19 tháng 9 2020

https://hoidap247.com/cau-hoi/27753