Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác SAOB có \(\widehat{OAS}+\widehat{OBS}=180^0\)
nên SAOB là tứ giác nội tiếp
1: góc OAS+góc OBS=90+90=180 độ
=>OASB nội tiép
2: Xét ΔSAC và ΔSDA có
góc SAC=góc SDA
góc ASC chung
=>ΔSAC đồng dạng với ΔSDA
=>SA/SD=SC/SA
=>SA^2=SD*SC=SA*SB
3: Xét (O) có
SA,SB là tiêp tuyến
=>SA=SB
mà OA=OB
nên OS là trung trực của AB
=>OS vuông góc AB tại I
=>SI*SO=SA^2=SC*SD
=>SI/SD=SC/SO
=>ΔSIC đồng dạng với ΔSDO
a: góc SAO+góc SBO=180 độ
=>SAOB nội tiếp
c: Xét ΔSAD và ΔSCA có
góc SAD=góc SCA
góc ASD chung
=>ΔSAD đồng dạng vớiΔSCA
Bài 1 :
a.Ta có MC là tiếp tuyến của (O)
\(\Rightarrow MC\perp OC\)
Mà \(MK\perp KD\Rightarrow\widehat{MCO}=\widehat{MKD}=90^0\Rightarrow OCDK\) nội tiếp
b.Vì MC là tiếp tuyến của (O)
\(\Rightarrow\widehat{MCA}=\widehat{MBC}\Rightarrow\Delta MCA~\Delta MBC\left(g.g\right)\)
\(\Rightarrow\frac{MC}{MB}=\frac{MA}{MC}\Rightarrow MC^2=MA.MB\)
c . Vì MO∩(O)=AB \(\Rightarrow AB\) là đường kính của (O)
\(\Rightarrow AC\perp BC\Rightarrow\widehat{BCD}+\widehat{MCA}=90^0\Rightarrow\widehat{BCD}=90^0-\widehat{MCA}\)
Mà \(\widehat{MCA}=\widehat{MBC}\Rightarrow\widehat{MCD}=90^0-\widehat{ABN}=\widehat{BNK}=\widehat{CND}\)
\(\Rightarrow\Delta DCN\) cân
d ) Ta có : \(\widehat{BFD}=90^0=\widehat{BKD}\) vì AB là đường kính của (O)
\(\Rightarrow BKFD\) nội tiếp
\(\Rightarrow\widehat{FDK}=\widehat{KBF}=\widehat{ABC}+\widehat{CBF}=\widehat{MCA}+\widehat{FCD}=\widehat{DCE}\)
\(+\widehat{FCD}=\widehat{FCE}\)
Vì MC là tiếp tuyến của (O)
\(\Rightarrow CEDF\) nội tiếp